NONINVASIVE DERMATOLOGICAL LESION CLASSIFIER
无创皮肤病病变分类器
基本信息
- 批准号:2645334
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-30 至 1999-03-31
- 项目状态:已结题
- 来源:
- 关键词:artificial intelligence biomedical automation biomedical equipment development clinical research diagnosis design /evaluation fluorescence spectrometry histology human subject neoplasm /cancer classification /staging neoplasm /cancer diagnosis noninvasive diagnosis reflection spectrometry skin neoplasms spectrometry
项目摘要
Skin cancer is the fastest growing cancer in the United States today.
Approximately 34,100 Americans developed cutaneous melanoma in 1995, and
7,200 died of the disease; of the survivors, many must contend with the
ongoing trauma of disfigurement and fear. Skin biopsies are now the most
frequently performed medical procedure reimbursed by Medicare. It is
axiomatic among dermatologists that early detection and diagnosis are
critical in the care and treatment of skin cancer patients. Great
strides have been made in recent years in early detection of suspect skin
lesions; however, the diagnosis remains based in the subjective
evaluation of which skin lesions to biopsy. This decision is the basis
of a great dilemma for physicians of at-risk patients who develop
literally hundreds of lesions which could be pre-cancerous or cancerous.
On one hand biopsies are expensive and traumatic; on the other, failure
to biopsy the right lesion can lead to severe consequences. The dilemma
is further exacerbated by the fact that 50-80% of biopsies prove
unnecessary after the fact, contributing to an enormous of valuable
health care dollars, patient trauma and negative patient behavior
feedback. Recent developments in dermatological spectroscopy used to
train an artificial neural net technology suggest that an automated
clinical diagnostic aid which produces a quantitative rather than
qualitative diagnostic assessment of skin lesions is possible. This
project proposes development and testing of such a product.
Spectroscopic samples of approximately 500 patients with abnormal skin
lesions will be coupled with an equal number of normal skin spectra and
used to train an artificial neural net classifier. This automated
diagnostic aid will be tested against a large number of test samples for
which a histological diagnosis is available for evaluation of the system.
PROPOSED COMMERCIAL APPLICATIONS:
The proposed project will lead to a non-invasive, in-office, real-time
test to provide an automated, repeatable diagnostic probability of the
nature of skin lesions prior to biopsy. Skin biopsies are now the most
frequently performed reimbursed Medicare procedure, and as many as 50-80%
are found not to be necessary after the fact. The low cost of this test,
and rapid amortization of the system, coupled with the enormous health
care cost savings possible in conjunction with a significant and widely
recognized health problem, suggest that this product could have great
commercial potential.
皮肤癌是当今美国增长最快的癌症。
1995 年,大约有 34,100 名美国人患有皮肤黑色素瘤,
7,200人死于该病;在幸存者中,许多人必须与
持续的毁容和恐惧创伤。 皮肤活检现在是最
经常进行的医疗程序由 Medicare 报销。 这是
皮肤科医生不言而喻,早期检测和诊断是
对于皮肤癌患者的护理和治疗至关重要。 伟大的
近年来在可疑皮肤的早期检测方面取得了长足进步
病变;然而,诊断仍然基于主观
评估哪些皮肤病变需要活检。 这个决定是依据
对于治疗高危患者的医生来说,这是一个巨大的困境
实际上有数百个可能是癌前或癌变的病变。
一方面,活组织检查费用昂贵且造成创伤;另一方面,另一方面,失败
对病变部位进行活检可能会导致严重的后果。 困境
50-80% 的活检证明这一事实进一步加剧了
事后不必要,贡献了巨大的价值
医疗费用、患者创伤和患者消极行为
反馈。 皮肤病学光谱学的最新发展用于
训练人工神经网络技术表明,自动化
临床诊断辅助工具产生定量而非
可以对皮肤病变进行定性诊断评估。 这
项目建议开发和测试此类产品。
约 500 名皮肤异常患者的光谱样本
病变将与同等数量的正常皮肤光谱相结合,
用于训练人工神经网络分类器。 这个自动化的
诊断辅助工具将针对大量测试样本进行测试
组织学诊断可用于系统评估。
拟议的商业应用:
拟议的项目将带来一种非侵入性、办公室内、实时的
测试提供自动化、可重复的诊断概率
活检前皮肤病变的性质。皮肤活检现在是最
经常进行医疗保险报销程序,高达 50-80%
事后发现没有必要。该测试成本低,
系统的快速摊销,加上巨大的健康状况
与显着且广泛的治疗相结合,可以节省护理成本
公认的健康问题,表明该产品可能有很大的作用
商业潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric R. Craine其他文献
Eric R. Craine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric R. Craine', 18)}}的其他基金
Community Oriented Tool for Reducing Melanoma Health Disparities
减少黑色素瘤健康差异的面向社区的工具
- 批准号:
8144139 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Community Oriented Tool for Reducing Melanoma Health Disparities
减少黑色素瘤健康差异的面向社区的工具
- 批准号:
8303053 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
All Digital Home Use System for Mole Monitoring
用于鼹鼠监测的全数字家庭使用系统
- 批准号:
6735761 - 财政年份:2004
- 资助金额:
$ 10万 - 项目类别:
相似海外基金
Clinical Protocol, Data Management and Informatics Shared Resource
临床方案、数据管理和信息学共享资源
- 批准号:
8180659 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
Detection of chewing and swallowing to estimate eating patterns and energy intake
检测咀嚼和吞咽以估计饮食模式和能量摄入
- 批准号:
7022662 - 财政年份:2005
- 资助金额:
$ 10万 - 项目类别:
Detection of chewing and swallowing to estimate eating patterns and energy intake
检测咀嚼和吞咽以估计饮食模式和能量摄入
- 批准号:
7140644 - 财政年份:2005
- 资助金额:
$ 10万 - 项目类别: