Artificial Intelligence, Modeling, and Informatics for Nutrition Guidance and Systems (AIMINGS) Center
营养指导和系统人工智能、建模和信息学 (AIMINGS) 中心
基本信息
- 批准号:10552675
- 负责人:
- 金额:$ 129.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-19 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAll of Us Research ProgramArchitectureAreaArtificial IntelligenceBehavioralComplexComputational ScienceDataData ScienceData SetDepartment of DefenseDietDietary PracticesEconomicsFaceFood PatternsFundingGenesGeneticGoalsHealthHuman ResourcesIndividualIndividual DifferencesInformaticsInformation SystemsKnowledgeLaboratoriesLearningMetabolismMethodsModelingNutritionalPathway interactionsPersonsPhysiologicalPrecision HealthProteinsPublic HealthResearchResourcesSkinStructureSystemUnited States National Institutes of HealthVisionbuilt environmentclinical applicationcloud basedcomputing resourcescontextual factorsflexibilityindividual responseinsightmicrobiomenovel strategiesnutritionoperationprecision nutritionprediction algorithmpreservationprogramsresponsesocialtooltool developmentvirtualvirtual humanvirtual laboratory
项目摘要
Abstract – Overall AIMINGS Center
The vision of this proposed Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and
Systems (AIMINGS) Center is to implement computational and data science approaches and tools to advance
nutrition for precision health in a way that accounts for the complex systems involved. Many existing data sets
include extraneous data, making them difficult to analyze at best, and at worst, prone to generating misleading
or biased insights. Thus, there is a need to for new approaches, methods, and tools to collapse and distill data
to make them more Artificial Intelligence (AI)-ready and ready for a range of different analyses. This coincides
with the goal of Project 1: to develop and utilize The Data Distiller for Precision Nutrition, a set of
approached and tools that can collapse and distill nutrition-relevant data to create datasets that are AI-
ready and ready for a range of other analyses. The first objective of the Nutrition for Precision Health (NPH)
program is to “examine individual differences observed in response to different diets by studying the
interactions between diet, genes, proteins, microbiome, metabolism and other individual contextual factors.”
Given the type of missing data we face in nutrition, and the importance of establishing causal relationships
rather than correlations, there is a need for new imputation methods. To address this, Project 2, the Causal
Relationship Disentangler, will introduce new approaches for handling missing data while preserving
causal structure. Learning how to transfer causal knowledge and doing so with missing data is critical
for realizing the potential of nutrition for precision health. The NPH program’s other objectives are “to use
AI to develop algorithms to predict individual responses to foods and dietary patterns,” and “to validate
algorithms for clinical application.” This requires bringing different causal pathways together to understand how
they interact. Agent-based models (ABMs) can help and serve as "virtual laboratories" to predict how different
people may respond to a particular diet under different circumstances. Therefore, the goal of Project 3 (The
Virtual Human for Precision Nutrition) is to develop an ABM tool that can help better understand and
predict an individual's response to food and dietary patterns, while bringing together and accounting
for the interactions between genetic, physiological, and behavioral factors. However, focusing on the
individual alone will not be enough to address all aspects of NPH. Therefore, the Virtual Public Health
Precision Nutrition Laboratory (Project 4) will develop ABMs that represent and account for the
systems outside individuals such as their social, economic, and built environments. An Administrative
and Coordination Core will oversee all operations and a pilot program. A Data Systems Core (DSC) will
leverage the substantial computing resources of CUNY, West Point, and the Department of Defense to create
a flexible cloud-based architecture for data flow and a collaborative workspace. A Computational Systems
Core will provide resources and personnel to support the DSC and tool development/deployment.
摘要 – 总体目标中心
该提议的人工智能、建模和信息学的愿景是用于营养指导和
系统(AIMINGS)中心旨在实施计算和数据科学方法和工具,以推进
以一种考虑到许多现有数据集的方式实现精准健康的营养。
包含无关的数据,这使得它们在最好的情况下难以分析,在最坏的情况下,容易产生误导
因此,需要新的方法、方法和工具来分解和提炼数据。
使它们更好地为人工智能(AI)做好准备并准备好进行一系列不同的分析。
项目 1 的目标是:开发和利用 The Data Distiller for Precision Nutrition,这是一套
可以分解和提取营养相关数据以创建人工智能数据集的方法和工具
为精准健康营养 (NPH) 的首要目标做好准备。
该计划的目的是“通过研究不同饮食的反应来检查观察到的个体差异”
饮食、基因、蛋白质、微生物组、新陈代谢和其他个体背景因素之间的相互作用。”
鉴于我们在营养方面面临的缺失数据类型以及建立因果关系的重要性
为了解决这个问题,需要新的插补方法,而不是相关性,项目 2,因果关系。
关系解缠器将引入新的方法来处理丢失的数据,同时保留
学习如何迁移因果知识以及如何处理缺失的数据至关重要。
NPH 计划的其他目标是“利用营养促进精准健康”。
人工智能开发算法来预测个人对食物和饮食模式的反应,”并“验证
临床应用的算法。”这需要将不同的因果路径结合起来以了解如何进行。
它们相互作用,基于代理的模型(ABM)可以帮助并充当“虚拟实验室”来预测差异有多大。
人们可能会在不同的情况下对特定的饮食做出反应,因此,项目3的目标(The)。
Virtual Human for Precision Nutrition)旨在开发一种 ABM 工具,可以帮助更好地理解和
预测个人对食物和饮食模式的反应,同时汇总和计算
然而,关注遗传、生理和行为因素之间的相互作用。
仅靠个人不足以解决 NPH 的所有方面,因此,虚拟公共卫生。
精准营养实验室(项目 4)将开发 ABM,代表并解释
个人之外的系统,例如社会、经济和建筑环境。
协调核心将监督所有运营,数据系统核心(DSC)将负责监督。
利用纽约市立大学、西点军校和国防部的大量计算资源来创建
用于数据流和协作工作空间的灵活的基于云的架构。
Core 将提供资源和人员来支持 DSC 和工具开发/部署。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vulnerability or Resiliency? A Two-Wave Panel Analysis of Social Network Factors Associated with Glycemic Levels among Mexican Immigrants in the Bronx, NYC, Before and During COVID-19.
脆弱性还是弹性?
- DOI:
- 发表时间:2024-02
- 期刊:
- 影响因子:0
- 作者:Flórez, Karen R;Hwang, Neil S;Hernández, Maria;Verdaguer, Sandra;Derose, Kathryn P;de la Haye, Kayla
- 通讯作者:de la Haye, Kayla
Translating digital anthropometry measurements obtained from different 3D body image scanners.
转换从不同 3D 身体图像扫描仪获得的数字人体测量结果。
- DOI:
- 发表时间:2023-09
- 期刊:
- 影响因子:4.7
- 作者:Ashby, Nicholas;Jake LaPorte, G;Richardson, Daniel;Scioletti, Michael;Heymsfield, Steven B;Shepherd, John A;McGurk, Michael;Bustillos, Brenda;Gist, Nicholas;Thomas, Diana M
- 通讯作者:Thomas, Diana M
Machine learning modeling practices to support the principles of AI and ethics in nutrition research.
机器学习建模实践支持营养研究中的人工智能和伦理原则。
- DOI:
- 发表时间:2022-12-02
- 期刊:
- 影响因子:6.1
- 作者:Thomas, Diana M.;Kleinberg, Samantha;Brown, Andrew W.;Crow, Mason;Bastian, Nathaniel D.;Reisweber, Nicholas;Lasater, Robert;Kendall, Thomas;Shafto, Patrick;Blaine, Raymond;Smith, Sarah;Ruiz, Daniel;Morrell, Christopher;Clark, Nicholas
- 通讯作者:Clark, Nicholas
Natural language processing: fast forwarding research to the "good stuff": Natural language processing for nutrition.
自然语言处理:将研究快速推进到“好东西”:用于营养的自然语言处理。
- DOI:
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Lindquist; Joseph M
- 通讯作者:Joseph M
Research gaps and opportunities in precision nutrition: an NIH workshop report.
精准营养的研究差距和机遇:NIH 研讨会报告。
- DOI:10.1093/ajcn/nqac237
- 发表时间:2022-09-02
- 期刊:
- 影响因子:0
- 作者:Bruce Y Lee;J. Ordovás;E. Parks;Cheryl Anderson;A. Barabási;S. Clinton;K. de la Haye;V. Duffy;P. Franks;Elizabeth M Ginexi;K. Hammond;Erin C. Hanlon;Michael Hittle;E. Ho;A. Horn;R. Isaacson;P. Mabry;S. Malone;Corby K. Martin;J. Mattei;S. Meydani;Lorene M. Nelson;M. Neuhouser;Brendan Parent;N. Pronk;H. Roche;S. Saria;F. Scheer;E. Segal;M. Sevick;T. Spector;Linda Van Horn;K. Varady;V. S. Voruganti;Marie F Martinez
- 通讯作者:Marie F Martinez
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Y Lee其他文献
Food insecurity is under-reported in surveys that ask about the past year.
在询问过去一年的调查中,粮食不安全问题的报道不足。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.5
- 作者:
M. Livings;W. B. de Bruin;J. P. Wilson;Bruce Y Lee;Mengya Xu;A. Frazzini;Swati Chandra;Kate Weber;Marianna Babboni;K. de la Haye - 通讯作者:
K. de la Haye
Application of group model building in implementation research: A systematic review of the public health and healthcare literature
群体模型构建在实施研究中的应用:公共卫生和医疗保健文献的系统回顾
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Weanne Myrrh Estrada;Terry T. K. Huang;D. Lounsbury;Priscila Zito;P. Iftikhar;N. El;L. Gilbert;E. Wu;Bruce Y Lee;P. Mateu;Nasim S. Sabounchi - 通讯作者:
Nasim S. Sabounchi
The Need for Systems Approaches for Precision Communications in Public Health
公共卫生领域对精确通信系统方法的需求
- DOI:
10.1080/10810730.2023.2220668 - 发表时间:
2023-04-07 - 期刊:
- 影响因子:4.4
- 作者:
Bruce Y Lee;D. Greene;Sheryl A. Scannell;Christopher McLaughlin;Marie F Martinez;Jessie L. Heneghan;Kevin L. Chin;Xia Zheng;Ruobing Li;Laura Lindenfeld;S. Bartsch - 通讯作者:
S. Bartsch
Microsoft Word-nqac237.docx
Microsoft Word-nqac237.docx
- DOI:
10.1107/s0021889897002537 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:6.1
- 作者:
Bruce Y Lee;J. Ordovás;E. J. Parks;Cheryl AM Anderson;A. Barabási;S. Clinton;K. Haye;V. Duffy;P. Franks;Elizabeth M Ginexi;K. Hammond;Erin C. Hanlon;Michael Hittle;Emily Ho;A. Horn;R. Isaacson;P. Mabry;Susan E. Malone;Corby K. Martin;J. Mattei;S. Meydani;Lorene M. Nelson;M. Neuhouser;N. Pronk;S. Saria;Frank Ajl Scheer;E. Segal;M. Sevick;T. Spector;Linda B Van Horn;K. Varady;V. S. Voruganti;Marie F Martinez - 通讯作者:
Marie F Martinez
The Impact of a Place-Tailored Digital Health App Promoting Exercise Classes on African American Women’s Physical Activity and Obesity: Simulation Study
因地制宜的数字健康应用程序推广运动课程对非裔美国女性的身体活动和肥胖的影响:模拟研究
- DOI:
10.2196/30581 - 发表时间:
2022-08-22 - 期刊:
- 影响因子:7.4
- 作者:
T. Powell;Marie F Martinez;Kosuke Tamura;Sam J. Neally;Kelly J. O'Shea;Kaveri Curlin;Yardley Albarracin;N. Vijayakumar;Matthew Morgan;Erika Ortiz;S. Bartsch;Foster Osei Baah;Patrick T. Wedlock;L. Ortiz;Sheryl A. Scannell;Kameswari A Potharaju;Samuel L. Randall;Mario Solano Gonzales;Molly Domino;Kushi Ranganath;D. Hertenstein;Rafay Syed;Colleen Weatherwax;Bruce Y Lee - 通讯作者:
Bruce Y Lee
Bruce Y Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Y Lee', 18)}}的其他基金
Simulating the Spread and Control of Multiple MDROs Across a Network of Different Nursing Homes
模拟多个 MDRO 在不同疗养院网络中的传播和控制
- 批准号:
10549492 - 财政年份:2023
- 资助金额:
$ 129.75万 - 项目类别:
Project 3: The Virtual Human for Precision Nutrition
项目 3:精准营养虚拟人
- 批准号:
10552681 - 财政年份:2022
- 资助金额:
$ 129.75万 - 项目类别:
Project 4: Virtual Public Health Precision Nutrition Laboratory
项目4:虚拟公共卫生精准营养实验室
- 批准号:
10386502 - 财政年份:2022
- 资助金额:
$ 129.75万 - 项目类别:
Project 3: The Virtual Human for Precision Nutrition
项目 3:精准营养虚拟人
- 批准号:
10386501 - 财政年份:2022
- 资助金额:
$ 129.75万 - 项目类别:
Project 4: Virtual Public Health Precision Nutrition Laboratory
项目4:虚拟公共卫生精准营养实验室
- 批准号:
10552687 - 财政年份:2022
- 资助金额:
$ 129.75万 - 项目类别:
Artificial Intelligence, Modeling, and Informatics for Nutrition Guidance and Systems (AIMINGS) Center
营养指导和系统人工智能、建模和信息学 (AIMINGS) 中心
- 批准号:
10386497 - 财政年份:2022
- 资助金额:
$ 129.75万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 129.75万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 129.75万 - 项目类别:
Health and Financial Costs of Unequal Care: Colorectal Cancer as a Case Study
不平等护理的健康和财务成本:结直肠癌案例研究
- 批准号:
10656807 - 财政年份:2023
- 资助金额:
$ 129.75万 - 项目类别:
A mobile health framework for left ventricular end diastolic pressure diagnostics and monitoring.
用于左心室舒张末压诊断和监测的移动健康框架。
- 批准号:
10601929 - 财政年份:2023
- 资助金额:
$ 129.75万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 129.75万 - 项目类别: