Structural basis for activity of and resistance to HIV integrase inhibitors
HIV整合酶抑制剂的活性和耐药性的结构基础
基本信息
- 批准号:10551720
- 负责人:
- 金额:$ 68.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AIDS/HIV problemActive SitesAddressAffectAnti-Retroviral AgentsAppearanceBindingBiochemicalBiological AssayBiophysicsCell Culture TechniquesChromatinChromosomesClinicClinicalClinical PathwaysCollaborationsCommunitiesComplementComplexComputer ModelsComputing MethodologiesCryoelectron MicroscopyDNADataDevelopmentDisease ProgressionDrug TargetingDrug resistanceDrug resistance pathwayDrug usageEnzymesFoundationsFree EnergyFundingFutureGenerationsGuidelinesHIVHIV IntegraseHIV Integrase InhibitorsHIV drug resistanceHIV therapyHIV-1IndividualInfectionIntegraseKineticsLeadLightMeasurementMediatingMethodsMutationNaphthyridinesNucleoproteinsPathway interactionsPatient-Focused OutcomesPatientsPatternPersonsPharmaceutical PreparationsPharmacologic SubstancePositioning AttributePreventionProcessRecording of previous eventsResidual stateResistanceResistance developmentSeriesSpumavirusStructureTechniquesTherapeuticTherapeutic UsesThermodynamicsVariantViralVirus IntegrationVirus ReplicationWorkanalogantiretroviral therapybaseclinically relevantdesigndrug actioneffective therapyexperimental studyfightinghuman pathogenimprovedinhibitorinhibitor therapyinsightinterestmimicrymutantnovelpre-clinicalpreclinical evaluationprototypepublic health relevanceresistance mechanismresponsestructural biologytooltreatment responseviral DNAviral resistancevirology
项目摘要
ABSTRACT
The Human Immunodeficiency Virus Type 1 (HIV-1, hereafter referred to as HIV) currently infects ~40 million
people worldwide, and the number of infected individuals continues to rise. In the absence of a cure, antiretroviral
therapy represents the primary treatment option, because it slows disease progression and reduces new
infections. Integrase (IN) Strand Transfer Inhibitors (INSTIs) are a class of antiretroviral therapeutics that block
integration of viral DNA into host chromosomes, a process that is mediated by the viral IN enzyme, which
assembles into oligomeric nucleoprotein complexes on the ends of viral DNA, termed “intasomes”. INSTIs
selectively target intasomes and represent first-line therapies in the clinic. However, the emergence of IN variants
resistant to INSTIs is becoming a greater clinical problem. Structural biology approaches can shed light on the
mechanisms underlying drug action and resistance, providing useful information for rationally improving the
current INSTIs. When complemented with ancillary techniques, such as biochemical activity assays, biophysical
thermodynamic and kinetic measurements, cellular virology, and diverse computational approaches including
free energy calculations, the structures precisely detail mechanisms of resistance against specific INSTIs and
provide guidance for designing and developing novel 3rd generation INSTIs to fight infections. In this proposal,
approaches centered around using revolutionary advances in cryo-electron microscopy for structural studies will
show how INSTIs interact with their natural drug target, the HIV intasome (both WT and mutant), and elucidate
the mechanisms by which resistance to these drugs emerges. There are three Specific Aims that will: (1) extend
and build upon current efforts to provide a mechanistic understanding of both why and how select viral resistant
variants (VRVs) arise in response to the clinically used drug Dolutegravir (DTG) or the most potent
developmental in-house compound that 4d, which is currently under pre-clinical evaluation; (2) broadly identify
and analyze novel mechanisms and pathways of drug resistance that arise in response to treatment with 2nd
generation drugs, highlighting both primary and compensatory mutations, and providing strategies to predict
future variants; (3) select for residual resistant variants arising in response to treatment with novel 3rd generation
INSTIs that were synthesized based on the concept of substrate mimicry, many of which effectively inhibit viral
resistant variants that arise in response to treatment with 2nd generation clinically used INSTI drugs, and explain
mechanisms underlying the superior potency of novel compounds. This work will improve our understanding of
an important class of drugs used to treat people living with HIV, identify mechanisms, pathways, and patterns of
clinically relevant resistance to INSTIs, and provide specific guidelines for their rational improvement.
抽象的
人类免疫缺陷病毒 1 型(HIV-1,以下简称 HIV)目前感染约 4000 万人
在没有治愈方法的情况下,抗逆转录病毒药物的感染人数持续上升。
治疗是主要的治疗选择,因为它可以减缓疾病进展并减少新的
整合酶 (IN) 链转移抑制剂 (INSTI) 是一类阻断感染的抗逆转录病毒疗法。
病毒 DNA 整合到宿主染色体中,这是由病毒 IN 酶介导的过程,
在病毒 DNA 末端组装成寡聚核蛋白复合物,称为“INSTI”。
选择性靶向整合体并代表临床一线疗法然而,IN变异体的出现。
对 INSTI 的耐药性正在成为一个更大的临床问题,结构生物学方法可以揭示这一问题。
药物作用和耐药机制,为合理改善药物耐药性提供有用信息
当前的 INSTI 与辅助技术相辅相成,例如生化活性测定、生物物理学。
热力学和动力学测量、细胞病毒学和多种计算方法,包括
自由能计算,该结构精确地详细描述了针对特定 INSTI 的抵抗机制
为设计和开发新型第三代 INSTI 来对抗感染提供指导。
围绕使用冷冻电子显微镜的革命性进展进行结构研究的方法将
显示 INSTI 如何与其天然药物靶标 HIV 嵌体(WT 和突变体)相互作用,并阐明
对这些药物产生耐药性的机制有以下三个具体目标:(1) 扩大耐药性。
并以当前的努力为基础,提供对为什么以及如何选择病毒抗性的机械理解
变异体(VRV)是对临床使用的药物多替拉韦(DTG)或最有效的药物的反应而出现的
(2) 广泛确定正在开发的内部化合物 4d,目前正在进行临床前评估;
并分析第二类药物治疗产生的耐药性的新机制和途径
一代,强调原发突变和药物补偿突变,并提供预测策略
(3)选择对新型第三代治疗产生反应而产生的残留耐药变体
基于底物拟态概念合成的 INSTI,其中许多能有效抑制病毒
第二代临床使用的 INSTI 药物治疗产生的耐药变异,并解释
这项工作将增进我们对新型化合物卓越功效的理解。
用于治疗艾滋病毒感染者的一类重要药物,确定感染的机制、途径和模式
临床相关的 INSTI 耐药性,并为其合理改进提供具体指南。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitry Lyumkis其他文献
Dmitry Lyumkis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitry Lyumkis', 18)}}的其他基金
Structural basis for activity of and resistance to HIV integrase inhibitors
HIV整合酶抑制剂的活性和耐药性的结构基础
- 批准号:
10661078 - 财政年份:2017
- 资助金额:
$ 68.65万 - 项目类别:
Structural basis for activity of and resistance to HIV integrase inhibitors
HIV整合酶抑制剂的活性和耐药性的结构基础
- 批准号:
9753903 - 财政年份:2017
- 资助金额:
$ 68.65万 - 项目类别:
Structural basis for activity of and resistance to HIV integrase inhibitors
HIV整合酶抑制剂的活性和耐药性的结构基础
- 批准号:
10238819 - 财政年份:2017
- 资助金额:
$ 68.65万 - 项目类别:
Breaking Barriers in Structural Biology: Novel CryoEM Methods and Applications
打破结构生物学的障碍:新颖的冷冻电镜方法和应用
- 批准号:
9561928 - 财政年份:2015
- 资助金额:
$ 68.65万 - 项目类别:
Breaking Barriers in Structural Biology: Novel CryoEM Methods and Applications
打破结构生物学的障碍:新颖的冷冻电镜方法和应用
- 批准号:
9349372 - 财政年份:2015
- 资助金额:
$ 68.65万 - 项目类别:
Breaking Barriers in Structural Biology: Novel CryoEM Methods and Applications
打破结构生物学的障碍:新颖的冷冻电镜方法和应用
- 批准号:
9002750 - 财政年份:2015
- 资助金额:
$ 68.65万 - 项目类别:
相似海外基金
Northwestern CORE Clinical Research Site: Trans-omics for HIV/AIDS Research
西北核心临床研究站点:艾滋病毒/艾滋病研究的跨组学
- 批准号:
10223024 - 财政年份:2019
- 资助金额:
$ 68.65万 - 项目类别:
Northwestern CORE Clinical Research Site: Trans-omics for HIV/AIDS Research
西北核心临床研究站点:艾滋病毒/艾滋病研究的跨组学
- 批准号:
10217306 - 财政年份:2019
- 资助金额:
$ 68.65万 - 项目类别:
Northwestern CORE Clinical Research Site: Trans-omics for HIV/AIDS Research
西北核心临床研究站点:艾滋病毒/艾滋病研究的跨组学
- 批准号:
10217306 - 财政年份:2019
- 资助金额:
$ 68.65万 - 项目类别:
Northwestern CORE Clinical Research Site: Trans-omics for HIV/AIDS Research
西北核心临床研究站点:艾滋病毒/艾滋病研究的跨组学
- 批准号:
9912209 - 财政年份:2019
- 资助金额:
$ 68.65万 - 项目类别:
Northwestern CORE Clinical Research Site: Trans-omics for HIV/AIDS Research
西北核心临床研究站点:艾滋病毒/艾滋病研究的跨组学
- 批准号:
10223024 - 财政年份:2019
- 资助金额:
$ 68.65万 - 项目类别: