High resolution modeling and design of immune recognition

免疫识别的高分辨率建模和设计

基本信息

  • 批准号:
    10543798
  • 负责人:
  • 金额:
    $ 34.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Project Summary: Accurate modeling of immune receptors and their recognition is a major challenge in computational biology, of direct relevance to many diseases and therapeutics. While they share common heterodimeric immunoglobulin folds, the immense sequence diversities of T cell receptors (TCRs) and antibodies lead to an astounding range of antigen binding modes and specificities. Current docking approaches are largely incapable of producing near-native models of these complexes in the set of top-ranked predictions, and conformational flexibility of TCR and antibody loops pose a major barrier to predictive algorithms. My laboratory has had a longstanding interest in developing and applying algorithms to better model and design TCRs and antibodies. We recently developed an algorithm and web server to model TCRs from sequence (TCRmodel), a database of TCR structures and sequences (TCR3d), and we have assembled an updated docking benchmark, which is being used to develop improvements to our TCR docking algorithm. We have also recently developed an updated antibody-antigen docking and affinity benchmark, which more than doubles the size of the previous benchmark release; we have performed docking and affinity prediction assessment on these cases, giving us a rich dataset of models and scores. During the next five years, we plan to expand and capitalize on these datasets to develop advanced knowledge-based tools and algorithms, including geometric deep learning methods, to address major challenges in this area: reliable modeling of CDR3 loop structures, accurate predictive antibody- antigen and TCR-peptide-MHC docking, and design of TCR and antibody targeting. This will result in the ability to model TCR and antibody interaction structures from sequence, precise control of TCR and antibody affinity and specificity, and the design of new interactions to target antigens of interest. We will release our methods and results to the community as web servers, databases, and code. This work will be enhanced by collaborations with leading laboratories, through which we will have access to new experimental structural, dynamic, and affinity data which will be used to develop, apply, and validate our algorithms.
项目概要: 免疫受体的准确建模及其识别是计算生物学的主要挑战 与许多疾病和治疗直接相关。虽然它们有共同的异二聚体免疫球蛋白 T 细胞受体 (TCR) 和抗体的巨大序列多样性导致了令人震惊的范围 抗原结合模式和特异性。目前的对接方法基本上无法产生 这些复合物在排名靠前的预测集中的近乎天然模型,以及构象灵活性 TCR 和抗体环对预测算法构成了主要障碍。我的实验室有着悠久的历史 对开发和应用算法来更好地建模和设计 TCR 和抗体感兴趣。我们最近 开发了一种算法和网络服务器来根据序列对 TCR 进行建模(TCRmodel),TCR 数据库 结构和序列(TCR3d),我们已经组装了一个更新的对接基准,正在 用于开发我们的 TCR 对接算法的改进。我们最近还开发了一个更新的 抗体-抗原对接和亲和基准,其大小是之前基准的两倍多 发布;我们对这些案例进行了对接和亲和力预测评估,为我们提供了丰富的参考资料 模型和分数的数据集。在接下来的五年中,我们计划扩展和利用这些数据集 开发先进的基于知识的工具和算法,包括几何深度学习方法, 解决该领域的主要挑战:CDR3环结构的可靠建模、准确的预测抗体- 抗原与TCR-肽-MHC对接,以及TCR和抗体靶向设计。这将导致能力 从序列中模拟 TCR 和抗体相互作用结构,精​​确控制 TCR 和抗体亲和力 和特异性,以及针对感兴趣的目标抗原的新相互作用的设计。我们将发布我们的方法 并将结果以 Web 服务器、数据库和代码的形式发布给社区。这项工作将得到加强 与领先实验室的合作,通过这些我们将获得新的实验结构, 动态和亲和力数据将用于开发、应用和验证我们的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian G. Pierce其他文献

Impact of AlphaFold on structure prediction of protein complexes: The CASP15‐CAPRI experiment
AlphaFold 对蛋白质复合物结构预测的影响:CASP15–CAPRI 实验
  • DOI:
    10.1002/prot.26609
  • 发表时间:
    2023-10-31
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    M. Lensink;G. Brysbaert;Nessim Raouraoua;Paul Bates;Marco Giulini;Rodrigo V. Honorato;Charlotte W van Noort;Joao M C Teixeira;A. Bonvin;Ren Kong;Hang Shi;Xufeng Lu;Shan Chang;Jian Liu;Zhiye Guo;Xiao Chen;Alex Morehead;Rajashree Roy;Tianqi Wu;Nabin Giri;Farhan Quadir;Chen Chen;Jianlin Cheng;C. Del Carpio;Eichiro Ichiishi;Luis A Rodríguez;J. Fernández;Ameya Harmalkar;Lee;Sam Canner;Rituparna Smanta;Jeffrey J. Gray;Hao Li;Peicong Lin;Jiahua He;Huanyu Tao;Shengqiang Huang;Jorge Roel‐Touris;Brian Jiménez‐García;Charles W Christoffer;Anika Jain;Yuki Kagaya;Harini Kannan;Tsukasa Nakamura;Genki Terashi;Jacob Verburgt;Yuanyuan Zhang;Zicong Zhang;Hayato Fujuta;M. Sekijima;Daisuke Kihara;Omeir Khan;Sergei Kotelnikov;Usman Ghani;D. Padhorny;D. Beglov;S. Vajda;D. Kozakov;Surendra S. Negi;Tiziana Ricciardelli;Didier Barradas;Zhen Cao;Mohit Chawla;Luigi Cavallo;R. Oliva;Rui Yin;Melyssa Cheung;Johnathan D. Guest;Jessica Lee;Brian G. Pierce;Ben Shor;Tomer Cohen;Matan Halfon;D. Schneidman;Shaowen Zhu;Rujie Yin;Yuanfei Sun;Yang Shen;M. Maszota;K. Bojarski;E. Lubecka;M. Marcisz;Annemarie Danielsson;Lukasz Dziadek;Margrethe Gaardløs;Artur Giełdoń;Adam Liwo;S. Samsonov;R. Ślusarz;Karolina Zieba;A. Sieradzan;C. Czaplewski;Shinpei Kobayashi;Yuta Miyakawa;Yasuomi Kiyota;Mayuko Takeda;Kliment Olechnovič;Lukas Valančauskas;J. Dapkūnas;Č. Venclovas;Björn Wallner;Lin Yang;Chengyu Hou;Xiaodong He;Shuai Guo;Shenda Jiang;Xiao;R. Duan;Liming Qui;Xianjin Xu;X. Zou;S. Velankar;S. Wodak
  • 通讯作者:
    S. Wodak
Hepatitis C Virus E1E2 Structure, Diversity, and Implications for Vaccine Development
丙型肝炎病毒 E1E2 结构、多样性以及对疫苗开发的影响
  • DOI:
    10.3390/v16050803
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian G. Pierce;Nathaniel Felbinger;Matthew C. Metcalf;Eric A. Toth;Gilad Ofek;Thomas R. Fuerst
  • 通讯作者:
    Thomas R. Fuerst
Evaluation of AlphaFold antibody–antigen modeling with implications for improving predictive accuracy
AlphaFold 抗体-抗原模型的评估对提高预测准确性的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Rui Yin;Brian G. Pierce
  • 通讯作者:
    Brian G. Pierce
Exploring the Potential of Structure-Based Deep Learning Approaches for T cell Receptor Design
探索基于结构的深度学习方法在 T 细胞受体设计中的潜力
  • DOI:
    10.1101/2024.04.19.590222
  • 发表时间:
    2024-04-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Helder V. Ribeiro;G. E. Jara;João V. S. Guerra;Melyssa Cheung;Nathaniel Felbinger;José G. C. Pereira;Brian G. Pierce;P. Lopes
  • 通讯作者:
    P. Lopes
Structural characterization and AlphaFold modeling of human T cell receptor recognition of NRAS cancer neoantigens
人类 T 细胞受体识别 NRAS 癌症新抗原的结构表征和 AlphaFold 建模
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daichao Wu;Rui Yin;Guodong Chen;Helder V. Ribeiro;Melyssa Cheung;Paul F. Robbins;Roy Mariuzza;Brian G. Pierce
  • 通讯作者:
    Brian G. Pierce

Brian G. Pierce的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian G. Pierce', 18)}}的其他基金

High resolution modeling and design of immune recognition
免疫识别的高分辨率建模和设计
  • 批准号:
    10330807
  • 财政年份:
    2022
  • 资助金额:
    $ 34.41万
  • 项目类别:
High Resolution Modeling and Design of T-Cell Receptors
T 细胞受体的高分辨率建模和设计
  • 批准号:
    9759968
  • 财政年份:
    2018
  • 资助金额:
    $ 34.41万
  • 项目类别:

相似国自然基金

抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
  • 批准号:
    62302277
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
  • 批准号:
    22304062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
  • 批准号:
    10597840
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
  • 批准号:
    10750556
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
  • 批准号:
    10601679
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
EnzyDock-based Multistate and Multiscale Tools for Covalent Drug Design
基于 EnzyDock 的多状态和多尺度共价药物设计工具
  • 批准号:
    10575904
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
  • 批准号:
    10836196
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了