Metabolic control of regulatory T cells during metabolic stress caused by viral pneumonia

病毒性肺炎引起代谢应激期间调节性 T 细胞的代谢控制

基本信息

项目摘要

PROJECT SUMMARY Regulatory T (Treg) cells are a subset of CD4+ T cells that maintain immune self-tolerance and mediate recovery from viral pneumonia by resolving lung inflammation and orchestrating tissue repair after lung injury. Treg cells also display metabolic plasticity; they modulate which substrates they acquire and how they metabolize them to support their functions in metabolically stressful microenvironments. AMP-activated Protein Kinase (AMPK) serves as a master regulator metabolic homeostasis by inducing energy-replenishing processes during energetic stress. AMPK promotes mitochondrial biogenesis (via epigenetic induction of the mitochondrial mass-promoting molecule PGC-1α) and long-chain fatty acid oxidation (LC-FAO, via activation of the mitochondrial LC-FA importer CPT1) in states of energy depletion. Treg cells have high levels of AMPK, and pharmacologic activation of AMPK induces Treg cell generation in vitro and in mouse models of lung disease. Surprisingly, Treg cell- specific loss of AMPK in vivo does not lead to spontaneous lethal autoimmunity or other signs of Treg cell dys- function, suggesting that AMPK is redundant in Treg cells at homeostatic conditions. To explore the role of AMPK in the Treg cell response to pathologies associated with metabolic stress (nutrient depletion, hypoxia, and oxidative stress), we bred Treg cell-specific AMPK knockout (Treg AMPK KO) mice and challenged them with either intratracheal instillation of influenza virus or subcutaneous engraftment of B16 melanoma tumors. While influenza virus-inoculated Treg AMPK KO mice had lower survival, tumors of Treg AMPK KO mice exhibited impaired growth and smaller volumes relative to controls. These results suggest that AMPK-deficient Treg cells undergo loss-of-function in settings of pathology-induced metabolic stress. Therefore, we hypothesize that Treg cell AMPK-mediated induction of mitochondrial mass and LC-FA oxidation are required for their pro-recovery function during influenza pneumonia. To elucidate the causal mechanisms through which AMPK promotes Treg cell pro-recovery function in the injured lung, we will leverage mice with Treg cell-specific deficiency of either AMPK and CPT1, along with influenza virus infection as a murine model of viral pneumonia. Our Specific Aims are to determine 1) whether AMPK promotes Treg cell pro-recovery function following influenza pneumonia by creating a permissive DNA hypomethylation landscape at Ppargc1a (encodes PGC-1α) to sustain their mitochondrial mass, and 2) whether AMPK-dependent mitochondrial import of LC-FAs is required for Treg cell pro-recovery function following influenza pneumonia. The PI's excellent mentorship network consists of experienced scientists in the fields of immunology, epigenetics, metabolism, and lung disease, all of whom will provide both day-to-day and high-level support during the funding period. The PI's environment is outstanding, with all necessary facilities, equipment, and expertise to complete the research strategy and training plan.
项目概要 调节性 T (Treg) 细胞是 CD4+ T 细胞的一个子集,可维持免疫自我耐受并介导恢复 通过解决肺部炎症和协调肺损伤后的组织修复来预防病毒性肺炎。 还表现出代谢可塑性;它们调节它们获得的底物以及它们如何代谢它们 支持其在代谢应激微环境中的功能。 通过在精力充沛期间诱导能量补充过程,充当代谢稳态的主要调节剂 AMPK 促进线粒体生物合成(通过线粒体质量促进的表观遗传诱导)。 分子 PGC-1α)和长链脂肪酸氧化(LC-FAO,通过激活线粒体 LC-FA 能量消耗状态下的输入细胞 CPT1) 具有高水平的 AMPK 和药理活性。 AMPK 在体外和小鼠肺部疾病模型中诱导 Treg 细胞生成。 体内 AMPK 的特异性缺失不会导致自发性致死性自身免疫或 Treg 细胞失调的其他迹象。 功能,表明 AMPK 在稳态条件下的 Treg 细胞中是多余的。 探讨 AMPK 的作用。 Treg 细胞对代谢应激相关病理的反应(营养耗尽、缺氧和 氧化应激),我们培育了 Treg 细胞特异性 AMPK 敲除(Treg AMPK KO)小鼠,并用 气管内滴注流感病毒或皮下植入 B16 黑色素瘤肿瘤。 接种流感病毒的 Treg AMPK KO 小鼠存活率较低,Treg AMPK KO 小鼠的肿瘤表现出 与对照相比,生长受损且体积较小。这些结果表明 AMPK 缺陷的 Treg 细胞。 在病理引起的代谢应激的情况下经历功能丧失。 细胞 AMPK 介导的线粒体质量诱导和 LC-FA 氧化是其促进恢复所必需的 阐明 AMPK 促进 Treg 的因果机制。 细胞在受伤的肺中促进恢复功能,我们将利用具有 Treg 细胞特异性缺陷的小鼠 AMPK 和 CPT1 以及流感病毒感染作为病毒性肺炎的小鼠模型。 确定 1) AMPK 是否促进流感肺炎后 Treg 细胞的促恢复功能 在 Ppargc1a(编码 PGC-1α)处创建一个允许的 DNA 低甲基化景观,以维持其 线粒体质量,2) Treg 细胞是否需要 AMPK 依赖性线粒体导入 LC-FA 流感肺炎后的促进康复功能 PI 的优秀指导网络包括: 免疫学、表观遗传学、代谢和肺部疾病领域经验丰富的科学家,他们都将 在资助期间提供日常和高层支持 PI的环境非常出色, 拥有完成研究策略和培训计划所需的所有设施、设备和专业知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manuel Andrés Torres Acosta其他文献

Manuel Andrés Torres Acosta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

晚期妊娠维持和抑制早产中cAMP信号活化PR的作用机制研究
  • 批准号:
    81300507
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Endothelial Metabolic Reprogramming by Interferon-gamma in Coronary Artery Disease
干扰素γ在冠状动脉疾病中的内皮代谢重编程
  • 批准号:
    10662850
  • 财政年份:
    2023
  • 资助金额:
    $ 4.68万
  • 项目类别:
Elucidating the Trophic Support of Long Axons by Metabolic Signaling in Oligodendrocytes
通过少突胶质细胞代谢信号阐明长轴突的营养支持
  • 批准号:
    10782630
  • 财政年份:
    2023
  • 资助金额:
    $ 4.68万
  • 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
  • 批准号:
    10656054
  • 财政年份:
    2023
  • 资助金额:
    $ 4.68万
  • 项目类别:
Role of AMPK in melanoma brain metastasis
AMPK 在黑色素瘤脑转移中的作用
  • 批准号:
    10927688
  • 财政年份:
    2023
  • 资助金额:
    $ 4.68万
  • 项目类别:
Role of AMPK in melanoma brain metastasis
AMPK 在黑色素瘤脑转移中的作用
  • 批准号:
    10927688
  • 财政年份:
    2023
  • 资助金额:
    $ 4.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了