Innovative Non-Invasive Imaging of Traumatic Brain Injury
创伤性脑损伤的创新非侵入性成像
基本信息
- 批准号:10527640
- 负责人:
- 金额:$ 40.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffectAgingAnatomyAnimal ModelAttenuatedAxonBiodistributionBiological MarkersBiomechanicsBlood - brain barrier anatomyBlood CirculationBlood Circulation TimeBlood VesselsBrainBrain EdemaBrain InjuriesCellular MembraneCerebrovascular CirculationCerebrovascular systemCessation of lifeChronicClinicalComputers and Advanced InstrumentationContusionsDetectionDiagnosisDiffuseDiffusion Magnetic Resonance ImagingDoseEmergency SituationFerritinFloridaFunctional disorderHalf-LifeHemoglobinHemorrhageHistologicHospitalizationHumanImageImaging DeviceImaging technologyIndividualInjuryIonizing radiationIronIschemiaLifeLinkLiquid substanceMagnetic Resonance ImagingMagnetismMeasuresMethodsMicroscopicMonitorMorbidity - disease rateNoiseOperative Surgical ProceduresOxygenPathologyPatientsPenetrationPerformancePersonsPhysiologicalPre-Clinical ModelPrincipal InvestigatorPrognosisPropertyQuantitative EvaluationsRecording of previous eventsRecoveryReportingResearchResearch PersonnelResolutionRodent ModelSecondary toSeveritiesSignal TransductionSiteSkull FracturesSurvivorsSwellingT2 weighted imagingTestingTimeTissuesTracerTraumatic Brain InjuryUniversitiesWorkX-Ray Computed Tomographybiomaterial compatibilityblood-brain barrier disruptionclinical imagingcohortcontrolled cortical impactdensitydisabilityimagerimaging capabilitiesimaging detectionimaging modalityimprovedin vivoinnovationinstrumentationiron oxidemagnetic fieldmechanical forcemild traumatic brain injurymolecular imagingmouse modelnanoparticleneurophysiologynon-invasive imagingoptical imagingparticlepre-clinicalquantitative imagingroutine imagingspectroscopic imagingsuperparamagnetismtoolwhite matterwhite matter damage
项目摘要
Project Summary
Traumatic brain injury (TBI) occurs due to the transient application of mechanical force to the brain, which
causes damage to cellular membranes, axons, and brain vasculature. TBI affects millions of people in the US
each year, resulting in hundreds of thousands of hospitalizations, thousands of deaths, and significant disability
in survivors. In addition to acute injury, TBI leads to progressive pathophysiology, including focal bleeding and
transient opening of the blood brain barrier (BBB). Accurate and fast diagnosis of severity of TBI is necessary to
better prescribe treatments and reduce associated death, morbidity, and disability. However, diagnosis of TBI
often relies on patient history, subjective complaints, and neurophysiological status, and classifying severity
remains challenging. Computed tomography and magnetic resonance imaging are fast and accurate for injuries
requiring emergency surgery but are limited to chronic issues such as excessive brain bleeding and swelling.
Magnetic resonance imaging (MRI) can evaluate white matter micropathology of TBI in cohorts but fail to
evaluate TBI in individuals. Therefore, innovative non-invasive imaging technologies are necessary to
improve TBI diagnosis and accelerate research at the clinical and pre-clinical stage.
This proposal will apply an innovative imaging modality called magnetic particle imaging (MPI) to monitor
vascular pathophysiology of TBI. MPI enables non-invasive, unambiguous, and quantitative imaging of the
biodistribution of biocompatible superparamagnetic iron oxide (SPION) tracers. Application of MPI to monitor
TBI consists of systemic administration of SPIONs that accumulate at sites of local BBB disruption, resulting in
a signal that is proportional to SPION MPI performance, rate of accumulation, and accumulation time. The PI
developed a new synthesis method resulting in SPIONs with enhanced MPI performance and preliminary results
demonstrate these SPIONs are superior to commercially available nanoparticles and possess long blood
circulation half-life. The PI hypothesizes that MPI using SPIONs optimized for sensitivity and blood circulation
time will be a powerful non-invasive complementary imaging tool to study TBI in pre-clinical rodent models. This
hypothesis will be tested through two specific aims. Studies in Aim 1 will determine SPION accumulation in a
controlled cortical impact (CCI) injury mouse model of TBI as a function of dose and time of administration and
will establish histological factors linked to MPI measures of SPION accumulation. Studies in Aim 2 will compare
MPI measures of SPION accumulation in the CCI injury mouse model against MRI measures of SPION
accumulation and other changes associated with TBI. Together, the proposed studies will test the potential of
MPI for non-invasive, sensitive, and quantitative evaluation of TBI in pre-clinical models by comparison to ground
truth and established non-invasive imaging modalities. The proposed work is supported by a diverse team of
investigators with complementary expertise and access to state-of-the-art MPI and MRI instrumentation.
项目概要
创伤性脑损伤 (TBI) 是由于短暂地向大脑施加机械力而发生的,
对细胞膜、轴突和脑血管系统造成损害。 TBI 影响着数百万人的美国
每年导致数十万人住院、数千人死亡和严重残疾
在幸存者中。除了急性损伤外,TBI 还会导致进行性病理生理学变化,包括局灶性出血和
血脑屏障(BBB)短暂开放。准确、快速地诊断 TBI 的严重程度对于
更好地制定治疗方案并减少相关的死亡、发病和残疾。然而,TBI 的诊断
通常依赖于患者病史、主观主诉和神经生理状态,并对严重程度进行分类
仍然具有挑战性。计算机断层扫描和磁共振成像可快速准确地诊断损伤
需要紧急手术,但仅限于脑过度出血和肿胀等慢性问题。
磁共振成像 (MRI) 可以评估队列中 TBI 的白质微病理学,但无法
评估个人 TBI。因此,需要创新的非侵入性成像技术
改善 TBI 诊断并加速临床和临床前阶段的研究。
该提案将应用一种称为磁粒子成像(MPI)的创新成像方式来监测
TBI 的血管病理生理学。 MPI 能够对物体进行非侵入性、明确的定量成像
生物相容性超顺磁性氧化铁(SPION)示踪剂的生物分布。 MPI在监控中的应用
TBI 包括全身性施用 SPION,这些 SPION 会在局部 BBB 破坏部位积聚,从而导致
与 SPION MPI 性能、累积速率和累积时间成比例的信号。 PI
开发了一种新的合成方法,使 SPION 具有增强的 MPI 性能和初步结果
证明这些 SPION 优于市售纳米颗粒并具有长血
循环半衰期。 PI 假设 MPI 使用针对灵敏度和血液循环进行优化的 SPION
time 将成为一种强大的非侵入性补充成像工具,用于研究临床前啮齿动物模型中的 TBI。这
假设将通过两个具体目标进行检验。目标 1 的研究将确定 SPION 的积累
TBI 受控皮质冲击 (CCI) 损伤小鼠模型作为给药剂量和时间的函数
将建立与 SPION 积累的 MPI 测量相关的组织学因素。目标 2 中的研究将进行比较
CCI 损伤小鼠模型中 SPION 积累的 MPI 测量与 SPION MRI 测量
积累和其他与 TBI 相关的变化。总之,拟议的研究将测试潜力
MPI 通过与地面比较,对临床前模型中的 TBI 进行非侵入性、灵敏且定量的评估
真相和已建立的非侵入性成像方式。拟议的工作得到了多元化团队的支持
研究人员具有互补的专业知识并可以使用最先进的 MPI 和 MRI 仪器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos M Rinaldi-Ramos其他文献
Carlos M Rinaldi-Ramos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos M Rinaldi-Ramos', 18)}}的其他基金
NIH Administrative Supplement to Promote Diversity in Health Related Research
NIH 促进健康相关研究多样性的行政补充
- 批准号:
10876754 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
- 批准号:
10450938 - 财政年份:2022
- 资助金额:
$ 40.07万 - 项目类别:
Nanoparticles for In Vivo Labeling of T Cells During Cancer Immunotherapy
用于癌症免疫治疗期间 T 细胞体内标记的纳米颗粒
- 批准号:
10634620 - 财政年份:2022
- 资助金额:
$ 40.07万 - 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
- 批准号:
10365339 - 财政年份:2022
- 资助金额:
$ 40.07万 - 项目类别:
Nanoparticles to Track T Cell Immunotherapy Using Magnetic Particle Imaging
使用磁粒子成像追踪 T 细胞免疫治疗的纳米粒子
- 批准号:
10621153 - 财政年份:2022
- 资助金额:
$ 40.07万 - 项目类别:
Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair
用于神经损伤修复的磁模板再生支架
- 批准号:
9086452 - 财政年份:2015
- 资助金额:
$ 40.07万 - 项目类别:
Magnetically Templated Regeneration Scaffolds for Nerve Injury Repair
用于神经损伤修复的磁模板再生支架
- 批准号:
8954155 - 财政年份:2015
- 资助金额:
$ 40.07万 - 项目类别:
Modeling of the Magnetic Particle Imaging Signal Due to Magnetic Nanoparticles
磁性纳米粒子产生的磁性粒子成像信号的建模
- 批准号:
9024525 - 财政年份:2015
- 资助金额:
$ 40.07万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
任务切换影响相继记忆的脑机制:基于认知老化的视角
- 批准号:32360201
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭介导下喀斯特耕地土壤微塑料老化及其对Cd有效性的影响机制
- 批准号:42367031
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
MicroRNA lipid-nanoparticle based therapy targets neuroinflammation and ApoE dysregulation in Alzheimer’s disease
基于 MicroRNA 脂质纳米颗粒的疗法针对阿尔茨海默病中的神经炎症和 ApoE 失调
- 批准号:
10667157 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
The role and regulation of mitochondrial localization in mature neurons.
成熟神经元线粒体定位的作用和调节。
- 批准号:
10634116 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
The role of Fbxl22 in the regulation of skeletal muscle mass
Fbxl22在骨骼肌质量调节中的作用
- 批准号:
10831254 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
ADRD spousal caregivers, loneliness, & immune dysregulation: Real-Time, real-world intervention targets
ADRD 配偶照顾者、孤独、
- 批准号:
10651524 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别: