Understanding Mycobacterium tuberculosis 20S proteasome assembly
了解结核分枝杆菌 20S 蛋白酶体组装
基本信息
- 批准号:10508512
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2024-09-29
- 项目状态:已结题
- 来源:
- 关键词:Actinobacteria classAffectAnti-Bacterial AgentsArchitectureBacteriaBacterial InfectionsBindingBiochemicalBiological AssayBiological PhenomenaBiophysicsCell Cycle RegulationCell SurvivalCellsCellular biologyComplexComputational BiologyComputer softwareCryoelectron MicroscopyDevelopmentDiffusionDimerizationDiseaseDrug TargetingEnvironmentEukaryotaFellowshipFoundationsFutureGoalsGrowthHourHumanImmune systemIn VitroIndividualInnovative TherapyKineticsKnowledgeLifeMass Spectrum AnalysisMeasuresMentorsMethodsMissionModelingMolecular StructureMycobacterium tuberculosisNucleosome Core ParticleOrganismPathway interactionsPatientsPlayProcessProtein ConformationProteinsPublic HealthResearchResearch PersonnelResistanceResolutionRhodococcusRoleStructureSystemTechnical ExpertiseTechniquesTestingThermodynamicsTimeTrainingTuberculosisUnited StatesUnited States National Institutes of HealthWorkbasebiophysical modelcareerchemical reactionclinical applicationdimerdrug developmentexperienceexperimental analysisexperimental studygenetic regulatory proteinhuman diseaseimmune resistanceimprovedinhibitorinnovationinsightinterdisciplinary approachlatent infectionmacromoleculemacrophagemathematical analysismathematical modelmisfolded proteinmonomermulticatalytic endopeptidase complexnovelparticlephysical propertypredictive modelingprotein degradationreaction rateskillstheoriestuberculosis treatment
项目摘要
PROJECT SUMMARY
Tuberculosis affects over 8,000 individuals in the United States every year, with Mycobacterium tuberculosis
(Mtb) able to resist the immune system in part through proteasome function. The proteasome is the
macromolecular structure responsible for the degradation of misfolded or short-lived proteins in cells, and is
composed of four stacked heptameric rings in a barrel-like structure. The long-term goal of this work is to help
understand the mechanisms that regulate proteasome assembly in the Mtb system using both mathematical
modeling and experimental analyses. The overall objectives in this application are to (1) elucidate the
mechanism(s) by which assembly dynamics regulate proteasome formation and (2) determine their role in Mtb
proteasome assembly. The central hypothesis is that Mtb proteasome has evolved a set of mechanisms that
maximize yield and thus bacterial immune resistance. The rationale for this project is that determination of the
mechanisms that regulate Mtb proteasome yield is likely to offer a strong scientific framework whereby new
strategies for tuberculosis therapies in patients can be developed. The central hypothesis will be tested by
pursuing three specific aims: (1) Evaluate the assembly kinetics of the Mtb proteasome using mathematical
and experimental analyses, (2) Develop a biophysical framework to understand interactions between
intermediate rings in proteasome assembly and (3) Analyze structures of intermediate rings in Mtb proteasome
assembly. In the first aim, a mathematical model will be used to determine the role kinetic parameters play in
ring formation and ultimately proteasome assembly. Additionally, Mtb monomers will be used to experimentally
measure the kinetics of assembly. For the second aim, a biophysical framework will be developed to study the
interactions between monomers and intermediate rings based on their size and structure. Furthermore, a
mass-spectrometry approach will be used to identify the size and composition of intermediate rings formed
during Mtb proteasome assembly. In the third aim, a cryo-Electron Microscopy approach will be used to
analyze the structures of assembly intermediates with atomic resolution. The research proposed in this
application is innovative because it focuses on the Mtb proteasome, which has not been sufficiently
characterized to date, and because it incorporates both mathematical modeling and experimental methods.
The proposed research is significant because it is expected to provide a foundation for the development and
future clinical applications of novel Mtb proteasome assembly inhibitors. Ultimately, such knowledge has the
potential of offering new opportunities for the development of innovative therapies to treat tuberculosis and
other bacterial infections. Moreover, this fellowship is sponsored by Drs. Eric J. Deeds and Joseph A. Loo, who
are leaders in their respective fields of computational biology and mass spectrometry. The proposed training
plan includes a strong research environment and mentoring team conducive to the applicant’s growth into a
highly successful independent researcher.
项目概要
在美国,结核病每年影响超过 8,000 人,其中结核分枝杆菌
(Mtb) 能够部分通过蛋白酶体功能抵抗免疫系统 蛋白酶体是。
负责细胞中错误折叠或短命蛋白质降解的大分子结构,
由四个堆叠的七聚环组成的桶状结构这项工作的长期目标是帮助。
使用数学方法了解 Mtb 系统中调节蛋白酶体组装的机制
本应用的总体目标是 (1) 阐明
装配动力学调节蛋白酶体形成的机制以及 (2) 确定它们在 Mtb 中的作用
中心假设是 Mtb 蛋白酶体已经进化出一套机制,
最大化产量,从而最大化细菌免疫抵抗力,该项目的基本原理是确定
调节结核分枝杆菌蛋白酶体产量的机制可能提供一个强有力的科学框架,因此新的
可以制定针对患者的结核病治疗策略。
追求三个具体目标:(1)利用数学方法评估 Mtb 蛋白酶体的组装动力学
和实验分析,(2)开发一个生物物理框架来理解之间的相互作用
蛋白酶体组装中的中间环和(3)分析结核分枝杆菌蛋白酶体中中间环的结构
第一个目标是使用数学模型来确定动力学参数在装配中的作用。
此外,Mtb 单体将用于实验。
对于第二个目标,将开发一个生物物理框架来研究组装动力学。
单体和中间环之间基于其尺寸和结构的相互作用。
质谱方法将用于识别形成的中间环的尺寸和成分
在第三个目标中,将使用冷冻电子显微镜方法来组装 Mtb 蛋白酶体。
用原子分辨率分析组装中间体的结构。
该应用程序具有创新性,因为它专注于 Mtb 蛋白酶体,而该蛋白酶体尚未得到充分研究
迄今为止的特征,因为它结合了数学建模和实验方法。
拟议的研究意义重大,因为它有望为开发和提供基础
最终,此类知识具有新型 Mtb 蛋白酶体组装抑制剂的未来临床应用。
为开发治疗结核病的创新疗法提供新机遇的潜力
此外,该奖学金由 Eric J. Deeds 博士和 Joseph A. Loo 博士赞助。
是各自计算生物学和质谱领域的领导者。
计划包括强大的研究环境和指导团队,有利于申请人成长为
非常成功的独立研究员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonila Lagunes其他文献
Leonila Lagunes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonila Lagunes', 18)}}的其他基金
Understanding Mycobacterium tuberculosis 20S proteasome assembly
了解结核分枝杆菌 20S 蛋白酶体组装
- 批准号:
10313217 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
Understanding Mycobacterium tuberculosis 20S proteasome assembly
了解结核分枝杆菌 20S 蛋白酶体组装
- 批准号:
10689119 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Toxin neutralization to functionally dissect interbacterial antagonism in the gut microbiome
毒素中和以功能性剖析肠道微生物组中细菌间拮抗作用
- 批准号:
10534604 - 财政年份:2022
- 资助金额:
$ 6.76万 - 项目类别:
Understanding Mycobacterium tuberculosis 20S proteasome assembly
了解结核分枝杆菌 20S 蛋白酶体组装
- 批准号:
10313217 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
Understanding Mycobacterium tuberculosis 20S proteasome assembly
了解结核分枝杆菌 20S 蛋白酶体组装
- 批准号:
10689119 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
Post-translocational protein folding in Gram-positive bacteria
革兰氏阳性菌中的易位后蛋白质折叠
- 批准号:
9773401 - 财政年份:2018
- 资助金额:
$ 6.76万 - 项目类别:
Post-translocational protein folding in Gram-positive bacteria
革兰氏阳性菌中的易位后蛋白质折叠
- 批准号:
8862793 - 财政年份:2015
- 资助金额:
$ 6.76万 - 项目类别: