Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
基本信息
- 批准号:10510050
- 负责人:
- 金额:$ 18.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-18 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcidsAddressAdhesionsAdsorptionAlgaeAlkanesulfonatesAlloysAntioxidantsBiocompatible MaterialsBiologicalBiopolymersBloodBlood PlateletsBlood ProteinsBlood VesselsBlood coagulationCardiovascular systemCarrageenanCatecholsChemicalsChemistryCoagulation ProcessComplement ActivationComplexCorrosionDataDevelopmentDevicesEndotheliumErythrocytesEvaluationEventExhibitsFailureFibrinForeign BodiesHealthcareHeart Valve ProsthesisHeart ValvesHemorrhageHeparinHuman bodyImmune responseImplantIn VitroInflammatoryInvestigationLeukocytesMedical DeviceModernizationModificationMolecular ConformationNanostructuresPlasmaPlasma ProteinsPlatelet ActivationPolymersPolysaccharidesProanthocyanidinsProceduresPropertyProteinsResearchResearch ProposalsResistanceRiskSourceStentsSulfateSurfaceThrombosisTimeLineTitaniaTitaniumWhole BloodWorkanimal tissueantimicrobialbasebiomaterial compatibilitycarboxymethylationcommon treatmentcostexperiencehemocompatibilityimplantable deviceimprovedin vivoin vivo evaluationmechanical propertiesnanoscalenovelpathogenpreventrecruitresponserestenosisside effectsuccesssurface coatingthrombogenesiswater treatment
项目摘要
PROJECT SUMMARY/ABSTRACT:
Blood-contacting medical devices, such as stents and heart valves, are common treatments in modern
healthcare. Every year, approximately 1 million and 90,000 stent and prosthetic heart valve procedures are
performed in the US, respectively. However, the use of these devices is associated with substantial risk of
thrombosis, and the rate of failure due to clot formation can be as high as 6%. When whole blood plasma comes
in contact with a foreign body (e.g., an implant), it leads to four main events capable of inducing a thrombogenic
response in vivo: protein adsorption, platelet adhesion/activation, leukocyte recruitment, and further activation of
complement and coagulation. Within seconds to minutes, key blood plasma proteins are adsorbed and undergo
conformational changes on the surface. This layer of adsorbed protein will allow subsequent adhesion and
activation of platelets, which promotes the formation of the fibrin clot, as well as the recruitment of leukocytes.
The platelets then initiate an inflammatory immune response and promote a complex cascade of events resulting
in thrombosis and/or fibrous encapsulation of the implant. Due to this complex foreign body response,
hemocompatibility has been a significant issue for blood-contacting medical devices. To address this challenge,
the development of novel biomaterials that can appropriately interact with blood and prevent thrombosis is vital
for the success of many implantable devices. In this work, we propose to prevent thrombosis on implants by
combining the promising properties of two biopolymers with nanoscale features on titania to develop a novel
blood-compatible surface. Biopolymers are good candidates for these applications, because of their compatibility
with the human body, biodegradability, processability and, in some cases, inherent antifouling and
antithrombogenic properties. Our preliminary results indicate that carboxymethylation of kappa-carrageenan with
monochloroacetic acid to form carboxymethyl-kappa-carrageenan (CMKC) improves the antithrombogenic
properties. CMKC is chemically similar to heparin and prevents thrombosis through multiple mechanisms.
However, CMKC is derived from algae, a renewable and low-cost source, while heparin is obtained from animal
tissues. Moreover, CMKC does not cause the side effects that heparin presents, such as bleeding effects. Our
group also has recently used of tanfloc (TA), a condensed tannin polymer as a biomaterial, and we have
demonstrated its promising cytocompatibility, antioxidant activity, antimicrobial, and antifouling properties.
Previous studies done by our group showed that the modification of titanium surfaces with TA and heparin
decreased the blood protein adsorption/activation, and platelet adhesion and activation. This work aims to
combine these promising properties of both biopolymers (CMKC and TA) to develop novel surfaces on titanium
that can prevent thrombosis.
项目概要/摘要:
支架和心脏瓣膜等血液接触医疗器械是现代医学中常见的治疗方法
卫生保健。每年约有 100 万例和 90,000 例支架和人工心脏瓣膜手术
分别在美国进行。然而,使用这些设备会带来巨大的风险
血栓形成,因凝块形成而导致的失败率可高达 6%。当全血浆到来时
与异物(例如植入物)接触时,会导致四个主要事件,从而诱发血栓形成
体内反应:蛋白质吸附、血小板粘附/激活、白细胞募集以及进一步激活
补体和凝血。在几秒到几分钟内,关键的血浆蛋白被吸附并经历
表面构象变化。这层吸附的蛋白质将允许随后的粘附和
血小板的激活,促进纤维蛋白凝块的形成以及白细胞的募集。
然后血小板启动炎症免疫反应并促进一系列复杂的事件
植入物的血栓形成和/或纤维包封。由于这种复杂的异物反应,
血液相容性一直是血液接触医疗器械的一个重要问题。为了应对这一挑战,
开发能够与血液适当相互作用并防止血栓形成的新型生物材料至关重要
许多植入式设备的成功。在这项工作中,我们建议通过以下方式预防植入物上的血栓形成:
将两种生物聚合物的有前途的特性与二氧化钛的纳米级特征相结合,开发出一种新型
血液相容性表面。生物聚合物由于其兼容性而成为这些应用的良好候选者
与人体、生物降解性、加工性以及在某些情况下固有的防污和
抗血栓形成特性。我们的初步结果表明,κ-卡拉胶的羧甲基化与
一氯乙酸形成羧甲基-κ-卡拉胶 (CMKC) 可提高抗血栓形成能力
特性。 CMKC 的化学性质与肝素相似,可通过多种机制预防血栓形成。
然而,CMKC 来自藻类,这是一种可再生且低成本的来源,而肝素则来自动物
组织。此外,CMKC 不会引起肝素带来的副作用,例如出血效应。我们的
集团最近还使用 tanfloc (TA),一种缩合单宁聚合物作为生物材料,我们有
证明了其有前途的细胞相容性、抗氧化活性、抗菌和防污特性。
本课题组前期研究表明,TA和肝素对钛表面的修饰
降低血液蛋白吸附/活化以及血小板粘附和活化。这项工作的目的是
结合两种生物聚合物(CMKC 和 TA)的这些有前途的特性,在钛上开发新型表面
从而可以预防血栓形成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Kipper其他文献
Matthew Kipper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Kipper', 18)}}的其他基金
Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
- 批准号:
10686166 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
相似国自然基金
线粒体丙酮酸转运载体调控血小板活化及动脉血栓形成的作用和机制研究
- 批准号:82300362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
n-3多不饱和脂肪酸重塑Drp1介导的骨骼肌线粒体稳态改善老年肌少症的机制研究
- 批准号:82304114
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
中药补骨脂成分次苷酸查尔酮靶向TAOK1改善肿瘤恶病质肌萎缩的作用研究
- 批准号:82374085
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
去势环境下CAF来源的CREB3L4通过增强癌细胞脂肪酸合成促进前列腺癌转移的机制研究
- 批准号:82303434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Rapid point-of-care detection of Trichomonas Vaginalis
快速即时检测阴道毛滴虫
- 批准号:
10699836 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Lewis Base Ligands Designed to Control Carbon-Carbon Bond Formation
旨在控制碳-碳键形成的路易斯碱配体
- 批准号:
10713775 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Rapid point-of-care detection of Trichomonas Vaginalis
快速即时检测阴道毛滴虫
- 批准号:
10699836 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Toward synthetic chemically defined mRNA for human therapeutics
用于人类治疗的合成化学定义的 mRNA
- 批准号:
10649299 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别: