A translational bioinformatics approach to elucidate and mitigate polypharmacy induced adverse drug reactions
阐明和减轻复方用药引起的药物不良反应的转化生物信息学方法
基本信息
- 批准号:10507532
- 负责人:
- 金额:$ 20.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAffinityAptitudeArchitectureAreaBasic ScienceBenzodiazepinesBindingBinding ProteinsBioinformaticsBiologicalBiological AssayBiological PharmacologyBuprenorphineCause of DeathCessation of lifeChemical ModelsChronic DiseaseClinicalClinical DataClinical Decision Support SystemsClinical InformaticsClinical SkillsComplementComputer AnalysisComputer softwareCounselingCreativenessDataData SetDatabasesDevelopmentDiagnosisDockingDrug CombinationsDrug InteractionsDrug PrescriptionsDrug usageElectronic Health RecordEnvironmentEthnic OriginEventFDA approvedFinancial HardshipFundingGenderGoalsGrantGraphHealthHealthcare SystemsHigh PrevalenceHumanImpaired cognitionIn VitroIncidenceK-Series Research Career ProgramsKnowledgeMedicineMentorsMethadoneMethodologyMethodsNaltrexoneOpiate AddictionOpioidOutcomeOverdoseOverdose reductionPathway interactionsPatientsPerformancePharmaceutical PreparationsPharmacologyPolypharmacyPredictive AnalyticsProteinsProtocols documentationQuality of lifeROC CurveRaceRecoveryRegimenRelapseReportingResearchResearch PersonnelResearch ProposalsResearch TrainingSamplingSeveritiesSiteSoftware ToolsStatistical Data InterpretationSupervisionTestingTobacco useTrainingUnited StatesValidationVentilatory Depressionaddictionadverse drug reactionbasecareercareer developmentclinical decision supportclinical practicecohortcostdeep learningdeep learning modeldesigndrug discoveryexperiencefallsgraph theoryimprovedindividual patientinformatics trainingknowledge graphmedication-assisted treatmentnew therapeutic targetnovelnovel therapeuticsopioid epidemicopioid overdoseopioid useopioid use disorderpatient safetypredictive modelingprescription opioidside effectskillsstandard of caretreatment guidelinesvector
项目摘要
PROJECT SUMMARY
This proposal for a mentored career development award consists of a training and research plan to facilitate Dr.
Zackary Falls' transition to an independent investigator focusing on translational bioinformatics for patient tailored
predictive analytics related to opioid addiction severity. The opioid epidemic is a major concern in the United
States that is exacerbated due to the high prevalence of prescribing two or more drugs to patients living with
opioid use disorder, which increases the likelihood of adverse drug reactions (ADRs) occurring in these patients.
Knowing and predicting drug–drug interactions (DDIs) and resulting ADRs is critical for the safety of patients, but
ADR prediction software tools used in clinical practice have many limitations. Firstly, most DDI databases used
in these software tools are incomplete because they incorporate only pair–wise DDIs. Additionally, most software
tools do not incorporate biological mechanism of action information for the drugs and omit relevant patient–
specific clinical data such as diagnoses, tobacco use, etc. Dr. Falls aims to exceed the efficacy of these software
with the creation of embedded representations for each patient's prescription profile, leveraging both drug–protein
interaction knowledge about the prescription drugs and patient level clinical data pertaining to polypharmacy and
ADRs. The specific aims of this research are to predict and validate novel off–target proteins for opioids and
other commonly co–prescribed medications (Aim 1), extract polypharmacy interactions and ADR relationships
from electronic health records of opioid prescription patients (Aim 2), and design a patient personalized software
that uses deep–learning architecture to predict severe ADRs caused by opioid related polypharmacy interactions
(Aim 3) to be integrated with clinical decision support systems for the benefit of patients and clinicians. The ap-
plicant has detailed a rigorous plan containing three career development goals for gaining the skills and expertise
to accomplish his research aims. These goals include: Goal 1. Gain knowledge in addiction research and phar-
macology as it relates to opioid use, Goal 2. Acquire advanced statistical analysis skills for clinical datasets, and
Goal 3. Increase understanding of graph theory and knowledge graph implementation. The team of mentors and
collaborators that has been assembled by Dr. Falls, including Prof. Ram Samudrala as primary mentor, perfectly
accounts for expertise in research areas that the applicant will be investigating and have knowledge in domains
that complement his own understandings to aid in the career development aspect of this proposal. Dr. Falls has
the aptitude, creativity, and perseverance to become an excellent researcher. The support of this K01, guidance
from his terrific team of mentors and collaborators, and the influence of a rich research environment will enable
him to further develop his skills and knowledge. He will surely accomplish all of his career development goals
and research aims, become a successful independent investigator, and flourish in his career.
项目概要
这项指导性职业发展奖的提案包括一项培训和研究计划,以促进博士。
扎卡里·福尔斯 (Zackary Falls) 转型为独立研究者,专注于为患者量身定制转化生物信息学
与阿片类药物成瘾严重程度相关的预测分析阿片类药物的流行是美国的一个主要问题。
由于向患有这种疾病的患者开出两种或两种以上药物的比例很高,导致这种情况加剧的国家
阿片类药物使用障碍,增加了这些患者发生药物不良反应 (ADR) 的可能性。
了解和预测药物相互作用 (DDI) 以及由此产生的 ADR 对于患者的安全至关重要,但是
临床实践中使用的ADR预测软件工具有很多局限性,首先,大多数使用的DDI数据库。
这些软件工具中的内容并不完整,因为它们仅包含成对的 DDI。
工具不包含药物作用的生物机制信息并忽略相关患者 -
具体的临床数据,如诊断、烟草使用等。Dr. Falls 的目标是超越这些软件的功效
为每个患者的处方概况创建嵌入式表示,利用药物-蛋白质
关于处方药和与复方用药相关的患者水平临床数据的交互知识
本研究的具体目的是预测和验证阿片类药物和药物的新型脱靶蛋白。
其他常见的共同处方药物(目标 1),提取多药相互作用和 ADR 关系
从阿片类药物处方患者的电子健康记录中获取信息(目标 2),并设计患者个性化软件
使用深度学习架构来预测阿片类药物相关的多药相互作用引起的严重不良反应
(目标 3)与临床决策支持系统集成,以造福患者和居民。
plicant 制定了详细的严格计划,其中包含三个职业发展目标,以获得技能和专业知识
实现他的研究目标包括: 目标 1. 获得成瘾研究和药物方面的知识。
与阿片类药物使用相关的宏观学,目标 2。获得临床数据集的高级统计技能分析,以及
目标 3. 提高对图论和知识图实现的理解 导师团队和团队。
Falls 博士召集的合作者,包括作为主要导师的 Ram Samudrala 教授,完美地
说明申请人将要研究的研究领域的专业知识以及该领域的知识
这补充了他自己的理解,以帮助福尔斯博士的职业发展方面。
成为一名优秀研究员的能力、创造力和毅力得到了K01的支持、指导。
来自他的导师和合作者的领域团队,以及丰富的研究环境的影响力将使
他进一步发展自己的技能和知识,他一定会实现所有的职业发展目标。
和研究目标,成为一名成功的独立研究者,并在他的职业生涯中蓬勃发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zackary Michael Falls其他文献
Zackary Michael Falls的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zackary Michael Falls', 18)}}的其他基金
A translational bioinformatics approach to elucidate and mitigate polypharmacy induced adverse drug reactions
阐明和减轻复方用药引起的药物不良反应的转化生物信息学方法
- 批准号:
10664024 - 财政年份:2022
- 资助金额:
$ 20.93万 - 项目类别:
A translational bioinformatics approach to elucidate and mitigate polypharmacy induced adverse drug reactions
阐明和减轻复方用药引起的药物不良反应的转化生物信息学方法
- 批准号:
10664024 - 财政年份:2022
- 资助金额:
$ 20.93万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A translational bioinformatics approach to elucidate and mitigate polypharmacy induced adverse drug reactions
阐明和减轻复方用药引起的药物不良反应的转化生物信息学方法
- 批准号:
10664024 - 财政年份:2022
- 资助金额:
$ 20.93万 - 项目类别:
A translational bioinformatics approach to elucidate and mitigate polypharmacy induced adverse drug reactions
阐明和减轻复方用药引起的药物不良反应的转化生物信息学方法
- 批准号:
10664024 - 财政年份:2022
- 资助金额:
$ 20.93万 - 项目类别: