Neural Network Approach to Estimate Fetal Weight in the Late Third Trimester of Pregnancy

神经网络方法估计妊娠晚期胎儿体重

基本信息

  • 批准号:
    10507172
  • 负责人:
  • 金额:
    $ 15.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-17 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary and Abstract Fetal weight estimation, or the assessment of antenatal fetal weight for the purposes of growth tracking and labor planning, is a critical component of safe prenatal care. Estimations currently rely on ultrasound-derived measurements of specific fetal planes to indirectly assess growth and wellbeing. The standard fetal biometric measurements for the estimation of fetal weight (biparietal diameter, head circumference, abdominal circumference and femur length) are poorly correlated to actual fetal weight, defined as the measurement of newborn weight in grams at birth. For newborns who are above 4,000 grams at birth, current error estimates of fetal weight in the late-third trimester of pregnancy are only accurate approximately 40% of the time. By no longer relying on fetal biometric measurements, data science approaches have the potential to estimate fetal weight with lower bias and errors compared to standard regression methods. To date, no studies have used ultrasound images, not just the fetal measurements, as input into a neural network approach to estimate fetal weight. The overarching goal of this proposal is to develop the skills and training necessary to lead the advancement of data science for use in clinical assessment during pregnancy. Using existing ultrasound imaging and birth certificate data (n=17,478 patients) from the University of Rochester (UR) Medicine Hospitals and the Finger Lakes Regional Perinatal/Obstetrics Data System (PDS), and n= 310 patients in the R01 study, Understanding Pregnancy Signals and Infant Development (UPSIDE: R01HD083369), the specific aims are: 1) To determine the maternal (i.e., body mass index) and fetal factors (i.e., growth measurements) that increase the discordance between the estimation of fetal weight by the Hadlock formula and actual birth weight of neonates using birth certificate data from the PDS, 2) To evaluate the accuracy of a CNN algorithm on ultrasound images in the third trimester to estimate fetal weight compared to the Hadlock formula, and 3) To test the effectiveness CNN algorithm on new ultrasound images from the UPSIDE study. This proposal will leverage the expertise of Dr. Caitlin Dreisbach’s mentorship team, computational resources, and the exceptional research environment at the UR School of Nursing, Goergen Institute for Data Science, and the Rochester Institute of Technology. Results from this study have the potential to change practice and improve clinical assessments during the late third trimester of pregnancy. The research study and mentored training included in this award allows Dr. Dreisbach to establish her long-term career goal of becoming an independent investigator with expertise in the translation of data science to obstetric clinical care.
项目概要和摘要 胎儿体重估计,或出于生长跟踪和评估目的的产前胎儿体重评估 分娩计划是安全产前护理的重要组成部分,目前依赖于超声波。 对特定胎儿平面的测量,以间接评估胎儿的生长和健康状况。 用于估计胎儿体重的测量(双顶径、头围、腹围) 周长和股骨长度)与实际胎儿体重(定义为测量 新生儿出生体重(以克为单位) 对于出生时体重超过 4,000 克的新生儿,目前的误差估计为 妊娠晚期胎儿体重的准确率约为 40%。 不再依赖胎儿生物识别测量,数据科学方法有可能估计胎儿 迄今为止,还没有研究使用过与标准回归方法相比具有较低偏差和误差的权重。 超声图像,而不仅仅是胎儿测量值,作为神经网络方法的输入来估计胎儿 该提案的总体目标是培养领导所需的技能和培训。 使用现有超声波进行妊娠期临床评估的数据科学的进步。 来自罗切斯特大学 (UR) 医学医院的影像和出生证明数据(n=17,478 名患者) 和 Finger Lakes 地区围产期/产科数据系统 (PDS),以及 R01 研究中的 n= 310 名患者, 了解怀孕信号和婴儿发育(UPSIDE:R01HD083369),具体目标是:1) 确定增加体重的母体因素(即体重指数)和胎儿因素(即生长测量值) Hadlock 公式估算的胎儿体重与实际出生体重之间的不一致 新生儿使用 PDS 的出生证明数据,2) 评估 CNN 算法的准确性 与 Hadlock 公式相比,使用妊娠晚期的超声图像来估计胎儿体重,以及 3) 该提案将在 UPSIDE 研究的新超声图像上测试 CNN 算法的有效性。 利用 Caitlin Dreisbach 博士导师团队的专业知识、计算资源和 UR 护理学院、格尔根数据科学研究所和 罗彻斯特理工学院的这项研究结果有可能改变实践并改进。 妊娠晚期的临床评估和指导培训。 纳入该奖项使 Dreisbach 博士能够确立成为独立的长期职业目标 具有将数据科学转化为产科临床护理的专业知识的研究者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caitlin Dreisbach其他文献

Caitlin Dreisbach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caitlin Dreisbach', 18)}}的其他基金

Neural Network Approach to Estimate Fetal Weight in the Late Third Trimester of Pregnancy
神经网络方法估计妊娠晚期胎儿体重
  • 批准号:
    10685346
  • 财政年份:
    2022
  • 资助金额:
    $ 15.87万
  • 项目类别:
Neural Network Approach to Estimate Fetal Weight in the Late Third Trimester of Pregnancy
神经网络方法估计妊娠晚期胎儿体重
  • 批准号:
    10685346
  • 财政年份:
    2022
  • 资助金额:
    $ 15.87万
  • 项目类别:

相似国自然基金

面向腹部创伤的超声辅助诊断关键技术研究
  • 批准号:
    62371121
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
  • 批准号:
    62303127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
  • 批准号:
    32360825
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
  • 批准号:
    32371043
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于肠道菌群介导TLR4/MyD88/NF-κB通路研究腹部推拿干预IBS肠道机械屏障的作用机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
  • 批准号:
    10718333
  • 财政年份:
    2023
  • 资助金额:
    $ 15.87万
  • 项目类别:
Endoscopic Ultrasound-guided In Vivo Confocal Laser Endomicroscopy as an Imaging Biomarker for the Accurate Risk Stratification of Intraductal Papillary Mucinous Neoplasms
内镜超声引导体内共聚焦激光内镜作为成像生物标志物,用于导管内乳头状粘液性肿瘤的准确风险分层
  • 批准号:
    10638754
  • 财政年份:
    2023
  • 资助金额:
    $ 15.87万
  • 项目类别:
Robust, Contrast-Free Functional Renal MRI
稳健、无对比的功能性肾脏 MRI
  • 批准号:
    10578551
  • 财政年份:
    2023
  • 资助金额:
    $ 15.87万
  • 项目类别:
Novel Post-surgical Incision Management Device to Prevent Ostomy Complications
预防造口并发症的新型术后切口管理装置
  • 批准号:
    10590062
  • 财政年份:
    2023
  • 资助金额:
    $ 15.87万
  • 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
  • 批准号:
    10707354
  • 财政年份:
    2022
  • 资助金额:
    $ 15.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了