Development of computational tools for accounting for host variability in predicting T-cell epitopes
开发计算工具来解释预测 T 细胞表位时的宿主变异性
基本信息
- 批准号:10502033
- 负责人:
- 金额:$ 37.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAffectAnimal ModelAntigensAreaBase SequenceBindingCancer VaccinesCommunicable DiseasesComputing MethodologiesCoupledDataData SetDevelopmentEpitopesGenerationsGeneticHealthHumanHypersensitivityImmuneImmune responseImmune systemImmunologyIndividualLifeLogicMachine LearningMalignant NeoplasmsMeasuresModelingMolecular MachinesMutationOutcomePeptidesPersonsPredictive ValuePrevalenceProcessProteinsReceptor CellResearchSafetySamplingSocietiesStatistical Data InterpretationStatistical ModelsT-Cell ReceptorT-Lymphocyte EpitopesTechnologyTrainingUncertaintyVaccine DesignVaccine ProductionVirusWorkantigen processingcombatcomputerized toolsemerging pathogengenetic informationimprovedinterestmachine learning modelmolecular modelingoutcome predictionpathogenpeptide based vaccinepersonalized medicine
项目摘要
PROJECT SUMMARY
The processing of antigens through proteolytic degradation and the recognition of epitopes is central to the
body’s ability to combat pathogens, like viruses, through discriminating self from non-self. As a result, there
has been substantial research effort aimed at determining the outcomes of these processes for novel
pathogens to enable epitope-driven vaccine design. There has also been great interest at the intersection of
immunology and personalized medicine in identifying subject (host) specific epitopes, as these have great
promise in the treatment of allergies and cancer where the distinction between self vs. non-self becomes
blurred. Computational methods have emerged as promising approaches for identifying (predicting) epitopes
that elicit a robust immune response given genetic information for an antigen. This is a very challenging task,
which is compounded further due to the existence of uncertainty caused by genetic variability between
pathogen strains, as well as, from individual to individual. Following this logic, it is also clear that using animal
models in evaluating the immune response elicited by epitopes can often have limited predictive value, since
sequence differences between a model species and humans can result in significantly different outcomes in
terms of the peptides formed during antigen processing and epitopes recognized by immune cell receptors.
Accordingly, there is an unmet need for computational tools that can predict the outcomes of antigen
processing and epitope recognition in a host-dependent fashion, where the models take as input both antigen
and host-specific genetic data. We propose the development of computational tools in three related areas to
meet these needs: i) Prediction of peptides formed through antigen processing; ii) Prediction of epitope
recognition by MHC molecules and T-cell receptors; and iii) Probabilistic analysis of epitopes most likely to
elicit an immune response. In the proposed work, molecular modeling and machine learning will be used to
develop accurate models of antigen processing and epitope binding to MHC molecules and T-cell receptors.
Molecular models will first allow us to identify key interactions between the antigen and immune system
proteins, which when coupled with statistical data can allow us to understand how mutations would affect those
interactions. The statistical analysis of the effects of mutations will be applied to large publicly available
datasets to sufficiently capture the effects of mutations on antigen processing and epitope recognition and will
ultimately be incorporated into machine learning models. The proposed probabilistic models will apply a
scenario-driven approach for capturing uncertainty in epitope generation and recognition. We will sample
potential antigen and human sequences based on known distributions of mutation prevalence to measure the
likelihood that an identified epitope will be generated and elicit a robust immune response. The proposed
computational tools, if successful, could have substantial impact on the areas of epitope-driven vaccine design,
including personalized cancer vaccines, and the identification of allergy related epitopes.
项目概要
通过蛋白水解降解和表位识别来处理抗原是抗原的核心。
身体通过区分自我和非自我来对抗病原体(如病毒)的能力。
已经进行了大量的研究工作,旨在确定这些过程的结果
病原体以实现表位驱动的疫苗设计也引起了人们的极大兴趣。
免疫学和个性化医学在识别受试者(宿主)特异性表位方面具有很大的作用
自我与非自我之间的区别成为治疗过敏和癌症的希望
计算方法已成为识别(预测)表位的有前景的方法。
给定抗原的遗传信息,引发强大的免疫反应,这是一项非常具有挑战性的任务,
由于遗传变异引起的不确定性的存在,情况变得更加复杂。
致病菌株,以及从个体到个体,按照这个逻辑,使用动物也是很明显的。
评估表位引发的免疫反应的模型通常具有有限的预测价值,因为
模型物种和人类之间的序列差异可能导致显着不同的结果
术语是在抗原加工过程中形成的肽和免疫细胞受体识别的表位。
ly,对可以预测抗原结果的计算工具的需求尚未得到满足
以宿主依赖性方式进行处理和表位识别,模型将两种抗原作为输入
我们建议在三个相关领域开发计算工具。
满足这些需求: i) 预测通过抗原处理形成的肽 ii) 预测表位;
MHC 分子和 T 细胞受体的识别;以及 iii) 最有可能的表位的概率分析
在拟议的工作中,将使用分子建模和机器学习来引发免疫反应。
开发抗原加工和表位与 MHC 分子和 T 细胞受体结合的准确模型。
分子模型首先使我们能够识别抗原和免疫系统之间的关键相互作用
蛋白质,当与统计数据相结合时,我们可以了解突变如何影响这些蛋白质
突变影响的统计分析将应用于大量公开的数据。
数据集足以捕获突变对抗原加工和表位识别的影响,并将
最终被纳入机器学习模型中。所提出的概率模型将应用
我们将采用场景驱动的方法来捕获表位生成和识别中的不确定性。
基于已知的突变流行率分布的潜在抗原和人类序列来测量
产生已识别表位并引发强烈免疫反应的可能性。
计算工具如果成功,可能会对表位驱动的疫苗设计领域产生重大影响,
包括个性化癌症疫苗以及过敏相关表位的鉴定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chris A. Kieslich其他文献
Chris A. Kieslich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The Role of Fyn Kinase in the Dorsal Striatum in Heroin Use Disorder
Fyn 激酶在海洛因使用障碍中背侧纹状体中的作用
- 批准号:
10679555 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别:
Determine the role of atmospheric particulate matter pollutants in contributing to Lewy Body Dementia
确定大气颗粒物污染物在路易体痴呆症中的作用
- 批准号:
10662930 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别:
Metabolism of cancer chemotherapeutics by the human gut microbiome
人类肠道微生物组对癌症化疗药物的代谢
- 批准号:
10635361 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别:
CSRD Research Career Scientist Award Application
CSRD研究职业科学家奖申请
- 批准号:
10701136 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别:
Exposure to complement induced preeclampsia promotes fetal steatosis
暴露于补体诱发的先兆子痫会促进胎儿脂肪变性
- 批准号:
10740802 - 财政年份:2023
- 资助金额:
$ 37.25万 - 项目类别: