Editing CG and non-CG DNA methylation to identify genomic elements that regulate gene expression
编辑 CG 和非 CG DNA 甲基化以识别调节基因表达的基因组元件
基本信息
- 批准号:10487529
- 负责人:
- 金额:$ 40.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBiologyBrainCRISPR screenCell divisionCellsChimeric ProteinsChromosomesClustered Regularly Interspaced Short Palindromic RepeatsCodeCommunitiesCorrelative StudyCpG IslandsDNADNA MethylationDNA Methylation RegulationDNA SequenceDepositionDevelopmentDiseaseElementsEnhancersEpigenetic ProcessGene ExpressionGene Expression ProfileGene Expression RegulationGene SilencingGenesGenetic Enhancer ElementGenetic TranscriptionGenomeGenomic approachGenomicsGenotypeGoalsHistonesHumanHuman BiologyHuman ChromosomesHuman GenomeHuman Genome ProjectMapsMeasuresMethodsMethylationModelingNamesNeuronsNucleic Acid Regulatory SequencesOutcome MeasurePhenotypePluripotent Stem CellsProteinsRegulationRegulator GenesRegulatory ElementResearchResolutionResourcesSequence-Specific DNA Binding ProteinSpecific qualifier valueTechnologyTestingTissue-Specific Gene ExpressionUntranslated RNAWritingbasebiomedical scientistcell typecombinatorialepigenetic memoryepigenome editingexperimental studyfunctional genomicsgene repressiongenetic regulatory proteinhistone modificationhuman diseasehuman pluripotent stem cellinduced pluripotent stem cellprogramspromoterstem cell differentiationstem cellstooltranscription factortranscriptome
项目摘要
PROJECT SUMMARY / ABSTRACT
A long-standing goal in biology is to define the relationship between genotype and phenotype. A major
surprise of the human genome project was that the human genome encodes so few genes despite the
complexity of cell types that compose for example, the human brain. As such it is assumed that
combinatorial gene expression programs are key for specifying the function of specialized cell types such
as neurons. Cell type specific gene expression programs therefore must be encoded by cis- and trans-
non-coding regulatory DNA elements whose function is regulated by the epigenetic code and key proteins
such as transcription factors. Elucidating how non-coding regulatory elements function to program cells will
transform our understanding of human biology, development and disease.
CRISPR/dCas9 technologies enable us to move beyond correlative studies, by editing the epigenome and
determining the direct effect of epigenetic alterations on gene expression. We have created a new
epigenetic editing functional genomics approach that we have named CRISPRoff. CRISPRoff robustly and
specifically writes CpG DNA methylation (5mC) and repressive histone modifications to target loci. We are
proposing to use CRISPRoff to map all genomic regulatory elements that are regulated by 5mC across an
entire human chromosome. In the proposed experiments we will use perturb-seq, which combines pooled
CRISPR screens with a single cell transcriptome readout, to directly measure how deposition of 5mC by
CRISPRoff across an entire chromosome modulates gene expression. This approach will identify genetic
regulatory elements key for induced pluripotent stem cells and neurons, a key step to understanding how
tissue-specific gene expression is controlled. Our proposed research will serve to demonstrate the utility of
this approach and motivate extending this approach to map gene regulatory elements across the entire
human genome. The results of the proposed research will serve as a fundamental resource and roadmap
for a broad community of biomedical scientists and greatly inform our understanding of human biology and
disease.
项目概要/摘要
生物学的一个长期目标是定义基因型和表型之间的关系。一个专业
人类基因组计划的令人惊讶之处在于,人类基因组编码的基因如此之少,尽管
构成人类大脑的细胞类型的复杂性。因此假设
组合基因表达程序是指定特殊细胞类型功能的关键,例如
作为神经元。因此,细胞类型特异性基因表达程序必须由顺式和反式编码
非编码调控DNA元件,其功能受表观遗传密码和关键蛋白调控
例如转录因子。阐明非编码调控元件如何对细胞进行编程将
改变我们对人类生物学、发育和疾病的理解。
CRISPR/dCas9 技术使我们能够超越相关研究,通过编辑表观基因组和
确定表观遗传改变对基因表达的直接影响。我们创建了一个新的
表观遗传编辑功能基因组学方法,我们将其命名为 CRISPRoff。 CRISPR 稳健地关闭并且
专门将 CpG DNA 甲基化 (5mC) 和抑制性组蛋白修饰写入目标位点。我们是
提议使用 CRISPRoff 来绘制整个基因组中受 5mC 调控的所有基因组调控元件
整个人类染色体。在提议的实验中,我们将使用 perturb-seq,它结合了池化
CRISPR 筛选具有单细胞转录组读数,可直接测量 5mC 的沉积情况
整个染色体上的 CRISPRoff 调节基因表达。该方法将识别遗传
诱导多能干细胞和神经元的关键调控元件,这是了解如何进行的关键一步
组织特异性基因表达受到控制。我们提出的研究将有助于证明
这种方法并激励扩展这种方法来绘制整个基因调控元件的图谱
人类基因组。拟议研究的结果将作为基本资源和路线图
为广泛的生物医学科学家群体提供帮助,极大地增进我们对人类生物学的理解
疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hani Goodarzi其他文献
Hani Goodarzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hani Goodarzi', 18)}}的其他基金
Leveraging natural phenotypic variations of heterogenous ALS populations-in-a-dish to enable scalable drug discovery
利用培养皿中异质 ALS 群体的自然表型变异来实现可扩展的药物发现
- 批准号:
10478452 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Leveraging natural phenotypic variations of heterogenous ALS populations-in-a-dish to enable scalable drug discovery
利用培养皿中异质 ALS 群体的自然表型变异来实现可扩展的药物发现
- 批准号:
10706307 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Editing CG and non-CG DNA methylation to identify genomic elements that regulate gene expression
编辑 CG 和非 CG DNA 甲基化以识别调节基因表达的基因组元件
- 批准号:
10655625 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
The RNA structural code underlying pathological regulation of RNA splicing in metastasis
转移中RNA剪接病理调控的RNA结构密码
- 批准号:
10654522 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
The RNA structural code underlying pathological regulation of RNA splicing in metastasis
转移中RNA剪接病理调控的RNA结构密码
- 批准号:
10358636 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
The RNA structural code underlying pathological regulation of RNA splicing in metastasis
转移中RNA剪接病理调控的RNA结构密码
- 批准号:
10117466 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
An antisense RNA-mediated regulatory program that drives cancer metastasis
反义RNA介导的驱动癌症转移的调控程序
- 批准号:
10435493 - 财政年份:2019
- 资助金额:
$ 40.38万 - 项目类别:
An antisense RNA-mediated regulatory program that drives cancer metastasis
反义RNA介导的驱动癌症转移的调控程序
- 批准号:
10177973 - 财政年份:2019
- 资助金额:
$ 40.38万 - 项目类别:
An antisense RNA-mediated regulatory program that drives cancer metastasis
反义RNA介导的驱动癌症转移的调控程序
- 批准号:
10652579 - 财政年份:2019
- 资助金额:
$ 40.38万 - 项目类别:
Alzheimer's Administrative Supplement - An antisense RNA-mediated regulatory program that drives cancer metastasis
阿尔茨海默氏症行政补充——一种驱动癌症转移的反义 RNA 介导的调控程序
- 批准号:
10117474 - 财政年份:2019
- 资助金额:
$ 40.38万 - 项目类别:
相似国自然基金
全氟化合物暴露通过影响脑结构导致情绪精神障碍的神经生物学机制研究
- 批准号:82371924
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
- 批准号:82330057
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
基于神经血管单元和TLR4/NF-κB信号通路的脑安滴丸益气活血防治偏头痛的生物学基础研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脑胶质瘤分子分型和预后的MRI深度学习预测及生物学可解释性研究
- 批准号:82102149
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脑认知网络构建及分子生物学检测的多靶点r-TMS治疗AD效果机制研究
- 批准号:62177004
- 批准年份:2021
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
Investigate the utility of APLP1 as an endosomal biomarker for Alzheimer's Disease in Down Syndrome
研究 APLP1 作为唐氏综合症阿尔茨海默氏病内体生物标志物的效用
- 批准号:
10727134 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
Engineering a human neuroimmune specific viral vector from Zika virus
从寨卡病毒中工程化人类神经免疫特异性病毒载体
- 批准号:
10727590 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别: