TERM: a novel mutagenesis paradigm enabling streamlined saturation forward genetics in vertebrate models
术语:一种新的诱变范例,可在脊椎动物模型中简化饱和正向遗传学
基本信息
- 批准号:10477464
- 负责人:
- 金额:$ 20.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesAnimal ModelBackBacteriaBiological AssayBiologyCRISPR/Cas technologyCell Culture SystemCellsCodeCollectionComplexCultured CellsDNADNA Binding DomainDiploidyDiseaseDrug TargetingEligibility DeterminationEmbryoEnzymesExhibitsGenerationsGenesGenetic DiseasesGenetic ResearchGenetic ScreeningGenetic studyGenomeGenomic DNAGenomic SegmentGenomicsGenotypeGerm CellsIn VitroInbreedingIndividualMammalian CellMammalsMapsMeasuresMedicineMethodologyMethodsModelingModern MedicineModernizationModificationMutagenesisMutationNatureOutcomePerformancePhenotypePigmentation physiologic functionPlaguePositioning AttributeProcessRandomizedRapid screeningReactionRefractoryReporterResearch PersonnelResearch TechnicsSiteSystemTechniquesTechnologyTertiary Protein StructureTestingTimeLineToxic effectTransgenesVariantWritingZebrafishbasedesignembryo cellflexibilityforward geneticsgene functiongenetic analysisgenetic approachgenome editinggenome-widegenomic locusin vivointerestmutantnew therapeutic targetnext generationnovelnovel therapeuticsnucleaseoff-target siteprime editingprime editorprocess optimizationrecruitreverse geneticsscreeningtranscription activator-like effector nucleasesvirtualwhole genome
项目摘要
PROJECT SUMMARY
Forward genetic screening is a remarkably powerful research technique, but has been widely abandoned.
Instead, modern genetics research relies heavily on reverse genetics approaches, revolutionized and made
more accessible via technological advances such as CRISPR/Cas9. As the vast majority of mutations are
recessive, CRISPR/Cas9 has enabled researchers to rapidly produce mutant phenotypes in reverse genetic
studies by simultaneously disrupting both alleles of a known gene of interest. By contrast, the random
mutagenesis paradigms used for forward genetic screening have remained relatively unchanged for the past
40 years, and still rely on generations of inbreeding to homozygose mutant alleles in animal models. No
mutagenesis technique has ever been developed that is both random and biallelic. Here we propose to
leverage modern genome-editing approaches to efficiently introduce mutations that are both random and
biallelic, revolutionizing the field of forward genetics by supporting a new generation of unbiased interrogations
of gene function across entire genomes.
Our proposed paradigm achieves random biallelic mutagenesis using a two-step process. First, a Prime Editor
enzyme (PE) stochastically reprograms the DNA-binding domain of a single-chain TALEN (scTALEN). Prime
editing occurs cell-independently; thus a culture with millions of cells would generate millions of unique DNA-
binding domains, each recruiting the scTALEN to a distinct genomic target site in each individual cell. Second,
the scTALEN induces biallelic mutations at its newly programmed target site. The end result is a large
collection of cells or embryos that each harbor unique biallelic mutations which can then be screened for
phenotypes of interest. Most importantly, this process can be deployed in virtually any model organism from
bacteria to mammals. Using the larval zebrafish system, we will illustrate how this approach shortens the
mutagenesis timeline for forward genetic screening from approximately one year down to just a few weeks. We
will develop our proposed paradigm, called TERM (TALEN Editing for Random Mutagenesis) by: 1) evaluating
biallelic mutagenesis efficiency and toxicity of different scTALEN variants; 2) optimizing the prime-editing
reaction to achieve efficient randomization of scTALEN targets; and 3) using TERM to perform forward genetic
screens in vitro and in vivo.
By breaking down the longstanding technical barriers to saturation mutagenesis screening, TERM will open
doors to one of the most powerful techniques in genetic research. Specifically, our approach will help to
characterize the ~80% of vertebrate genes that remain understudied, counteract longstanding bias towards
studying coding regions, facilitate drug target identification and highlight new therapeutic targets for disease
treatments, and expand genome-wide genetic analysis to models beyond cell-culture systems.
项目概要
正向基因筛选是一种非常强大的研究技术,但已被广泛放弃。
相反,现代遗传学研究在很大程度上依赖于反向遗传学方法,彻底改变并制造了
通过 CRISPR/Cas9 等技术进步,更容易获得。由于绝大多数突变是
CRISPR/Cas9 使研究人员能够在反向遗传中快速产生突变表型
通过同时破坏已知感兴趣基因的两个等位基因来进行研究。相比之下,随机
用于正向遗传筛选的诱变范式在过去相对保持不变
40 年来,仍然依赖动物模型中纯合突变等位基因的几代近交。不
已经开发出随机和双等位基因的诱变技术。在此我们建议
利用现代基因组编辑方法有效地引入随机突变和
双等位基因,通过支持新一代的公正审讯彻底改变正向遗传学领域
整个基因组的基因功能。
我们提出的范例使用两步过程实现随机双等位基因诱变。首先,Prime Editor
酶 (PE) 随机重新编程单链 TALEN (scTALEN) 的 DNA 结合域。主要的
编辑独立于细胞进行;因此,具有数百万个细胞的培养物将产生数百万个独特的DNA-
结合域,每个结合域将 scTALEN 招募到每个单独细胞中的不同基因组靶位点。第二,
scTALEN 在其新编程的靶位点诱导双等位基因突变。最终结果是一个大
细胞或胚胎的集合,每个细胞或胚胎都具有独特的双等位基因突变,然后可以对其进行筛选
感兴趣的表型。最重要的是,这个过程几乎可以部署在任何模型生物中
细菌到哺乳动物。使用幼虫斑马鱼系统,我们将说明这种方法如何缩短
正向基因筛查的诱变时间表从大约一年缩短到几周。我们
将通过以下方式开发我们提出的范例,称为 TERM(TALEN 随机突变编辑):1)评估
不同 scTALEN 变体的双等位基因诱变效率和毒性; 2)优化prime编辑
实现 scTALEN 靶点有效随机化的反应; 3)使用TERM进行正向遗传
体外和体内筛选。
通过打破饱和诱变筛选长期存在的技术障碍,TERM将开放
通向基因研究中最强大技术之一的大门。具体来说,我们的方法将有助于
描述了约 80% 的脊椎动物基因尚未得到充分研究,抵消了长期以来对基因的偏见
研究编码区,促进药物靶点识别并突出疾病的新治疗靶点
治疗,并将全基因组遗传分析扩展到细胞培养系统之外的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY MUMM其他文献
JEFFREY MUMM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY MUMM', 18)}}的其他基金
Innate immune system regulation of retinal regeneration
先天免疫系统对视网膜再生的调节
- 批准号:
10444471 - 财政年份:2022
- 资助金额:
$ 20.47万 - 项目类别:
Innate immune system regulation of retinal regeneration
先天免疫系统对视网膜再生的调节
- 批准号:
10707048 - 财政年份:2022
- 资助金额:
$ 20.47万 - 项目类别:
TERM: a novel mutagenesis paradigm enabling streamlined saturation forward genetics in vertebrate models
术语:一种新的诱变范例,可在脊椎动物模型中简化饱和正向遗传学
- 批准号:
10288603 - 财政年份:2021
- 资助金额:
$ 20.47万 - 项目类别:
Intersectional transgenic targeting of discrete neuronal and glial subtypes
离散神经元和神经胶质亚型的交叉转基因靶向
- 批准号:
10259997 - 财政年份:2021
- 资助金额:
$ 20.47万 - 项目类别:
Improved Animal Models for Cell-Specific Regenerative Medicine Paradigms
细胞特异性再生医学范式的改进动物模型
- 批准号:
9104636 - 财政年份:2016
- 资助金额:
$ 20.47万 - 项目类别:
Improved Animal Models for Cell-Specific Regenerative Medicine Paradigms
细胞特异性再生医学范式的改进动物模型
- 批准号:
9206193 - 财政年份:2016
- 资助金额:
$ 20.47万 - 项目类别:
Genetic and Chemical Screens for Factors Regulating Retinal Regeneration
遗传和化学筛选调节视网膜再生的因素
- 批准号:
8719118 - 财政年份:2014
- 资助金额:
$ 20.47万 - 项目类别:
Genetic and Chemical Screens for Factors Regulating Retinal Regeneration
遗传和化学筛选调节视网膜再生的因素
- 批准号:
8913979 - 财政年份:2014
- 资助金额:
$ 20.47万 - 项目类别:
Genetic and Chemical Screens for Factors Regulating Retinal Regeneration
遗传和化学筛选调节视网膜再生的因素
- 批准号:
8771054 - 财政年份:2014
- 资助金额:
$ 20.47万 - 项目类别:
Genetic and Chemical Screens for Factors Regulating Retinal Regeneration
遗传和化学筛选调节视网膜再生的因素
- 批准号:
8854178 - 财政年份:2014
- 资助金额:
$ 20.47万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲栽培稻抗稻瘟病基因Pi69(t)的功能等位基因克隆及进化解析
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 20.47万 - 项目类别:
Systems Genetics of Cocaine Preference in Drosophila
果蝇可卡因偏好的系统遗传学
- 批准号:
10675195 - 财政年份:2023
- 资助金额:
$ 20.47万 - 项目类别:
The role of beta-cell crinophagy in generating diabetogenic neoepitopes
β细胞吞噬在产生糖尿病新表位中的作用
- 批准号:
10733153 - 财政年份:2023
- 资助金额:
$ 20.47万 - 项目类别: