Investigating the adaptive role of heat-induced biomolecular condensates in translational regulation
研究热诱导生物分子缩合物在翻译调节中的适应性作用
基本信息
- 批准号:10475632
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:5&apos Untranslated RegionsAffectBehaviorBindingBioinformaticsBody TemperatureCell SurvivalCellsCellular Stress ResponseChicagoComputational BiologyEnvironmentExposure toFeverFlow CytometryFluorescence AnisotropyGlobal ChangeGrowthHeat Stress DisordersHeat shock proteinsHeat-Shock ResponseHigh temperature of physical objectImmuneImpairmentIn VitroLuciferasesMeasuresMediatingMethodsModelingMolecular ChaperonesMolecular ProbesNatureOrthologous GenePathogenicityPathway interactionsPhysical condensationPhysiologicalPlayPoly(A)-Binding ProteinsProductionProteinsRNA-Binding ProteinsRecoveryRegulationRepressionResearchResearch PersonnelResourcesRoleSaccharomyces cerevisiaeSaccharomycetalesShapesSignal TransductionStressSystemTemperatureTestingTranscriptTranslatingTranslation InitiationTranslational RegulationTranslational RepressionTranslationsUniversitiesWorkYeastsattenuationbasebiological adaptation to stresscareercell growthdesignenvironmental changefitnessin vivomisfolded proteinprotein aggregationprotein foldingprotein functionprotein misfoldingresponsestoichiometrytranslation assay
项目摘要
Project Summary/Abstract
When cells encounter heat, they undergo a number of archetypal intracellular changes: global
attenuation of translation, synthesis of molecular chaperones, and the formation of intracellular protein
aggregates. These aggregates were long thought to be the result of misfolded proteins, however, recent work
has suggested that these assemblies may be the adaptive result of biomolecular condensation. It has
remained unclear how biomolecular condensation functions to help cells survive heat stress. Here, I propose to
investigate a connection between heat-induced condensation and translation of molecular chaperones.
Previous work has demonstrated that poly(A)-binding protein (Pab1) condenses during heat shock in
yeast and disrupting Pab1 condensation impairs cellular growth during stress, indicating that stress-triggered
condensation of Pab1 is a part of the adaptive stress response. This finding motivated me to investigate why
Pab1 is important for cell growth during stress. Pab1 acts as a translational repressor by binding transcripts
with A-rich 5’ Untranslated Regions (5’UTRs), including its own transcript. Interestingly, the transcripts of
molecular chaperones produced during stress have A-rich 5’UTRs, and these molecular chaperones go on to
re-solubilize Pab1. My preliminary work shows that soluble Pab1 can repress translation of endogenous
transcripts with A-rich 5’UTRs, while Pab1 condensation inhibits this effect. This suggests an autoregulatory
mechanism through which heat-triggered condensation of Pab1 facilitates high level translation of stress-
induced chaperones, whose capacity to re-solubilize Pab1 leads to repressed translation after sufficient
chaperones have been produced.
To test this model, I will probe the molecular basis of Pab1 translational repression using in vitro
translation assays and fluorescence anisotropy. I will also carry out a bioinformatic analysis of A-rich 5’UTRs to
identify sequence features that are conserved and test whether they contribute to Pab1 repression. Next, I will
design yeast strains to perturb Pab1 condensation in vivo to test how this change affects the production of
molecular chaperones. Finally, Pab1 condensation does not completely explain how heat shock transcripts are
specifically translated in the midst of global translational attenuation, so I will investigate how A-rich 5’UTRs
can promote selective translation, using similar in vitro and in vivo methods. My proposed model connects
direct environmental sensing by condensation to the adaptive cellular stress response and helps shape our
understanding of how cells respond to heat in other contexts, such as immune cells in fever.
This research will be done at the University of Chicago with Dr. D. Allan Drummond and will build my
skillset in in vitro, in vivo, and computational biology, preparing me for a career as an independent investigator.
项目概要/摘要
当细胞遇到热量时,它们会经历许多典型的细胞内变化:
翻译减弱、分子伴侣合成和细胞内蛋白质形成
长期以来,这些聚集体被认为是蛋白质错误折叠的结果,然而,最近的研究发现。
表明这些组装可能是生物分子凝聚的适应性结果。
目前尚不清楚生物分子凝聚如何帮助细胞抵御热应激。
研究热诱导凝结与分子伴侣翻译之间的联系。
先前的研究表明,多聚腺苷酸结合蛋白 (Pab1) 在热激过程中会凝结
酵母和破坏 Pab1 凝结会损害应激期间的细胞生长,表明应激触发
Pab1 的凝结是适应性应激反应的一部分,这一发现促使我研究原因。
Pab1 对于应激期间的细胞生长很重要。Pab1 通过结合转录本充当翻译抑制因子。
具有富含 A 的 5' 非翻译区域 (5'UTR),包括其自己的转录本。
应激期间产生的分子伴侣具有富含 A 的 5’UTR,这些分子伴侣会继续
重新溶解 Pab1。我的初步工作表明可溶性 Pab1 可以抑制内源性翻译。
转录物具有富含 A 的 5’UTR,而 Pab1 缩合会抑制这种效应。
Pab1 的热触发凝结促进应力高水平转换的机制
诱导伴侣,其重新溶解 Pab1 的能力导致在足够的时间后抑制翻译
伴侣已经产生。
为了测试这个模型,我将利用体外实验探究 Pab1 翻译抑制的分子基础
我还将对富含 A 的 5'UTR 进行生物信息学分析。
接下来,我将识别保守的序列特征并测试它们是否有助于 Pab1 抑制。
设计酵母菌株来扰乱体内 Pab1 凝结,以测试这种变化如何影响生产
最后,Pab1 缩合并不能完全解释热激转录本的原理。
特别是在全球翻译衰减期间翻译,所以我将研究富含 A 的 5'UTRs 如何
使用类似的体外和体内方法可以促进选择性翻译。
通过凝结到适应性细胞应激反应来直接环境感知,并帮助塑造我们的
了解细胞在其他情况下如何对热做出反应,例如发烧时的免疫细胞。
这项研究将在芝加哥大学与 D. Allan Drummond 博士一起完成,并将建立我的
体外、体内和计算生物学方面的技能,为我作为一名独立研究者的职业生涯做好了准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caitlin Wong其他文献
Caitlin Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caitlin Wong', 18)}}的其他基金
Investigating the adaptive role of heat-induced biomolecular condensates in translational regulation
研究热诱导生物分子缩合物在翻译调节中的适应性作用
- 批准号:
10686023 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
Investigating the adaptive role of heat-induced biomolecular condensates in translational regulation
研究热诱导生物分子缩合物在翻译调节中的适应性作用
- 批准号:
10314895 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
相似海外基金
A novel live-attenuated Zika vaccine with a modified 5'UTR
一种带有改良 5UTR 的新型寨卡减毒活疫苗
- 批准号:
10730832 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Employing viruses to unravel the functional significance of the m5C epitranscriptome
利用病毒揭示 m5C 表观转录组的功能意义
- 批准号:
10638533 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Regulation of RNA sensing and viral restriction by RNA structures
RNA 结构对 RNA 传感和病毒限制的调节
- 批准号:
10667802 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Muscle-Specific CRISPR/Cas9 Exon Skipping for Duchenne Muscular Dystrophy Therapeutics
肌肉特异性 CRISPR/Cas9 外显子跳跃用于杜氏肌营养不良疗法
- 批准号:
10679199 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: