Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
基本信息
- 批准号:10458052
- 负责人:
- 金额:$ 49.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAnimal GeneticsAnimal ModelArrhythmiaBiomechanicsBudgetsCardiacCardiac MyocytesCardiac developmentCardiomyopathiesCollaborationsCongenital Heart DefectsCustomDevelopmentDiagnosisDiastoleDiseaseERBB2 geneEventFailureFunctional disorderGeneticGenotypeGoalsHeartHeart failureHereditary DiseaseImageKineticsKnowledgeLasersLeft ventricular non-compactionLigandsLightLinkLiquid substanceMalignant - descriptorMechanicsMediatingMorphogenesisMuscle CellsMutationMyocardialMyocardial ContractionMyocardiumMyopathyNon-compaction cardiomyopathyOpticsOxygenPathway interactionsPatientsPerfusionPersonsPharmacologyPhenotypePrevalenceResolutionSignal TransductionStructureSystemTestingTimeUnited StatesVentricularVentricular DysfunctionVentricular FunctionVentricular RemodelingZebrafishautomated segmentationdeep learningerbB-2 Receptorgene interactionhemodynamicshigh riskin silicoindexinginsightinterdisciplinary approachlearning strategymechanotransductionmultidisciplinarynotch proteinpreservationreceptorshear stressskeletalvector
项目摘要
ABSTRACT
Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial
Trabeculation and Function
Non-compaction cardiomyopathy (NCC) is a disease of endomyocardial trabeculation or known as
spongy myocardium. NCC carries a high risk of malignant arrhythmias, thromboembolic events, and
ventricular dysfunction in association with congenital heart defects or skeletal myopathy. Studies have
linked left ventricular non-compaction with autosomal dominant inherited disorders, and mutations in
Notch pathways are implicated in defective trabeculation and ventricular NCC. Biomechanical force is
intimately connected with mechanotransduction and cardiac morphogenesis. During development, the
myocardium differentiates into an outer compact zone and an inner trabeculated zone. Notch receptor-
ligand interaction induces EphrinB2-Nrg-ErbB2 signaling to initiate trabecular formation. Our in silico
analysis (Alison Marsden, Stanford) revealed elevated oscillatory shear index (OSI) in trabecular
ridges, leading to increased viscous dissipation, which was associated with changes in ventricular
contractile function and remodeling. However, uncoupling myocardial contraction from intracardiac flow
dynamics to elucidate Notch-mediated trabecular organization and subsequent associated changes in
local hemodynamics remains an unmet biomechanical challenge. In this context, we hypothesize that
hemodynamic shear and myocardial contractile forces coordinate trabecular organization needed to
preserve the ventricular structure and contractile efficiency. In combination of laser light-sheet and light-
field for super resolution and volumetric imaging, we simultaneously captured myocardial contraction
and intracardiac flow dynamics. In collaboration with Stanford Cardiac Mechanics, we integrated fluid
structure interaction (FSI) with super resolution imaging to demonstrate 4-D endocardial shear stress in
the trabecular ridges and grooves as possible developmental modulator. To test our hypothesis, we
propose three specific aims. In Aim 1, we will demonstrate that intracardiac shear stress activates
endocardial Delta-Notch signaling to promote trabecular ridge formation. In Aim 2, we will
demonstrate that ventricular contraction activates myocardial Jagged-Notch signaling to organize
trabecular groove formation. In Aim 3, we will demonstrate that the combination of trabecular ridge
and groove formation leads to optimal local hemodynamics and ventricular energetics. The
integration of advanced imaging, fluid structure interaction, and zebrafish genetics is uniquely suitable
to unveil trabecular organization in relation to kinetic energy dissipation. Our multi-disciplinary approach
provides new biomechanical insights into non-compaction cardiomyopathy with pathophysiological
significance to ventricular remodeling and function.
抽象的
将体积光场与计算流体动力学相结合来研究心肌
小梁形成和功能
非致密化心肌病 (NCC) 是一种心内膜心肌小梁疾病,或称为
海绵状心肌。 NCC 具有发生恶性心律失常、血栓栓塞事件和
与先天性心脏缺陷或骨骼肌病相关的心室功能障碍。研究有
左心室致密化不全与常染色体显性遗传性疾病以及基因突变有关
Notch 通路与小梁缺陷和心室 NCC 相关。生物力学力是
与机械转导和心脏形态发生密切相关。在开发过程中,
心肌分化为外部致密区和内部小梁区。 Notch受体-
配体相互作用诱导 EphrinB2-Nrg-ErbB2 信号传导启动小梁形成。我们的计算机
分析(Alison Marsden,斯坦福大学)显示小梁中的振荡剪切指数 (OSI) 升高
脊,导致粘性耗散增加,这与心室的变化有关
收缩功能和重塑。然而,将心肌收缩与心内血流脱钩
动力学来阐明Notch介导的小梁组织和随后的相关变化
局部血流动力学仍然是一个未解决的生物力学挑战。在这种背景下,我们假设
血流动力学剪切力和心肌收缩力协调所需的小梁组织
保持心室结构和收缩效率。结合激光光片和光
在超分辨率和体积成像领域,我们同时捕获了心肌收缩
和心内血流动力学。与斯坦福心脏力学合作,我们集成了流体
结构相互作用 (FSI) 与超分辨率成像可展示 4-D 心内膜剪切应力
小梁脊和凹槽作为可能的发育调节器。为了检验我们的假设,我们
提出三个具体目标。在目标 1 中,我们将证明心内剪切应力激活
心内膜 Delta-Notch 信号传导促进小梁嵴形成。在目标 2 中,我们将
证明心室收缩激活心肌锯齿状切迹信号以组织
小梁沟的形成。在目标 3 中,我们将证明小梁脊的组合
凹槽的形成导致最佳的局部血流动力学和心室能量学。这
先进成像、流体结构相互作用和斑马鱼遗传学的整合非常适合
揭示与动能耗散相关的小梁组织。我们的多学科方法
为非致密化心肌病的病理生理学提供了新的生物力学见解
对心室重构和功能具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tzung K Hsiai其他文献
Tzung K Hsiai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tzung K Hsiai', 18)}}的其他基金
Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
- 批准号:
10626035 - 财政年份:2021
- 资助金额:
$ 49.17万 - 项目类别:
Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
- 批准号:
10315583 - 财政年份:2021
- 资助金额:
$ 49.17万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10469660 - 财政年份:2020
- 资助金额:
$ 49.17万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10038297 - 财政年份:2020
- 资助金额:
$ 49.17万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10469660 - 财政年份:2020
- 资助金额:
$ 49.17万 - 项目类别:
Intravascular Deployment of a Wirelessly Powered Micro-Pacer
无线供电微型起搏器的血管内部署
- 批准号:
10661490 - 财政年份:2020
- 资助金额:
$ 49.17万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10674980 - 财政年份:2020
- 资助金额:
$ 49.17万 - 项目类别:
Intravascular Deployment of a Wirelessly Powered Micro-Pacer
无线供电微型起搏器的血管内部署
- 批准号:
10358490 - 财政年份:2020
- 资助金额:
$ 49.17万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10202717 - 财政年份:2020
- 资助金额:
$ 49.17万 - 项目类别:
Exercise-Induced Shear Stress Modulates Metabolic Pathways for Vascular Repair and Protection
运动引起的剪切应力调节血管修复和保护的代谢途径
- 批准号:
10436918 - 财政年份:2019
- 资助金额:
$ 49.17万 - 项目类别:
相似国自然基金
父代高血糖改变子代肝脏核受体PPARα启动子的甲基化──异常代谢环境经父系跨代传递的一种新机制?
- 批准号:81871222
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
梨状皮层调控癫痫发作的脑环路机制的多模态研究
- 批准号:31871085
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
利用反向遗传学技术发现寨卡病毒的关键神经毒力位点
- 批准号:31770190
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
小麦依赖-运动诱发严重过敏反应(WDEIA)的分子遗传学机制与动物模型研究
- 批准号:81771726
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
基于光遗传学方法建立小鼠焦虑模型的研究
- 批准号:81571352
- 批准年份:2015
- 资助金额:110.0 万元
- 项目类别:面上项目
相似海外基金
Functional plasticity in retinal degenerative disease
视网膜退行性疾病的功能可塑性
- 批准号:
10637293 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别:
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
- 批准号:
10679988 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别:
Neural pathways for obesity development by AgRP neurons
AgRP 神经元导致肥胖发展的神经通路
- 批准号:
10681993 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别:
Identification of a dopamine circuit mediating day eating and diet-induced obesity in mice
介导小鼠日间饮食和饮食诱导肥胖的多巴胺回路的鉴定
- 批准号:
10730567 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 49.17万 - 项目类别: