Host response-based diagnostics for identifying bacterial versus viral causes of lower respiratory infection in resource-limited settings
基于宿主反应的诊断,用于识别资源有限环境中下呼吸道感染的细菌与病毒原因
基本信息
- 批准号:10452456
- 负责人:
- 金额:$ 28.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAnti-Bacterial AgentsAntimicrobial ResistanceAreaAsian populationBacterial InfectionsBiologicalBiological AssayBiological MarkersBloodBlood specimenCOVID-19COVID-19 pandemicCOVID-19 patientCharacteristicsChildhoodClinicalCollectionConsensusCountryCustomDataDetectionDiagnosisDiagnosticEnrollmentEpithelial CellsEtiologyFeverFundingGene ExpressionGenesGenomic medicineGoalsImmune responseIncomeInfectionInfrastructureKnowledgeLaboratoriesLeukocytesLogistic RegressionsLower Respiratory Tract InfectionMachine LearningMicrobiologyMinorityMolecularNasal EpitheliumNasopharynxOutcomePatientsPerformancePolymerase Chain ReactionPopulationResearchResearch InfrastructureResource-limited settingResourcesSamplingSouth AsianSputumSri LankaTestingTimeTranslatingViralVirus DiseasesWorkadjudicateadjudicationbasebiobankclinical diagnosticscohortcombatdensitydiagnostic platformimprovedmigrationnovelpathogenpathogenic bacteriapathogenic virusperipheral bloodpoint of careprecision medicineprocalcitoninprospectiverespiratorytranscriptome sequencing
项目摘要
Project Summary/ Abstract
Lower respiratory tract infection (LRTI) is a common reason for antibacterial use and misuse globally.
Limitations associated with current LRTI diagnostics are a major driver of antibacterial overuse. Pathogen-
based diagnostics have limited sensitivity and do not distinguish infection from colonization. In low- or middle-
income countries (LMICs), LRTI diagnosis is further hindered by limited laboratory infrastructure. Host-based
diagnostics that leverage the host’s response to infection and broadly classify infection as viral or bacterial in
etiology could greatly reduce inappropriate antibacterial use for LRTI. Previously, we showed that novel,
peripheral blood-based gene expression classifiers accurately identified bacterial versus viral febrile respiratory
illness in a South Asian population. While promising, these classifiers require the collection of a blood sample,
which may be challenging in pediatric populations or in LMIC settings with limited resources. Emerging data
suggest that the host response in the nasopharynx may also help identify class of infection. Nasopharyngeal
sampling offers the possibility of an integrated diagnostic that combines both pathogen and host response
detection in a single sample, which would be especially attractive in LMIC settings. The objective of this
application is to determine the performance characteristics of NP-based gene expression classifiers at
differentiating viral versus bacterial LRTI in a South Asian population. The following aims are proposed 1) to
derive NP-based gene expression classifiers to discriminate viral versus bacterial LRTI, and 2) to transfer the
NP-based classifier to a real-time polymerase chain reaction (RT-PCR) assay that has potential to be
translated to a clinical platform. Comprehensive microbiological and molecular testing for respiratory viral and
bacterial pathogens will be completed. Subjects will be adjudicated as having viral versus bacterial LRTI, and
RNA sequencing will be performed using NP samples. Machine-learning approaches will identify host gene
expression classifiers that discriminate viral versus bacterial LRTI. The genes identified in the NP-based
classifier will be migrated onto customized, TaqMan Low-Density Array (TLDA) cards and RT-PCR will be
performed. Gene expression will be quantified and logistic regression performed to identify viral versus
bacterial LRTI. The expected outcome of this proposal is a significant improvement in our knowledge of how
novel NP-based gene expression classifiers perform at identifying viral versus bacterial LRTI in a South Asian
population. Following successful completion of these aims, we plan to translate the NP-based classifier to a
point-of-care, clinical diagnostic platform. The long-term goal of this work is to develop strategies for improving
antibacterial use in LMICs and to help combat the global crisis of antimicrobial resistance.
项目概要/摘要
下呼吸道感染 (LRTI) 是全球抗菌药物使用和滥用的常见原因。
当前 LRTI 诊断的局限性是病原体过度使用的主要原因。
基于诊断的敏感性有限,并且不能区分低度或中度定植的感染。
在收入国家(LMIC)中,基于主机的实验室基础设施有限进一步阻碍了 LRTI 诊断。
利用宿主对感染的反应进行诊断,并将感染大致分类为病毒或细菌
病因学可以大大减少 LRTI 的不当抗菌药物使用。
基于外周血的基因表达分类器准确识别细菌与病毒性发热呼吸道疾病
虽然很有希望,但这些分类器需要收集血液样本,
这对于儿科人群或新兴数据有限的中低收入国家可能具有挑战性。
表明鼻咽部的宿主反应也可能有助于识别感染类别。
采样提供了结合病原体和宿主反应的综合诊断的可能性
在单个样本中进行检测,这在中低收入国家环境中特别有吸引力。
应用程序是确定基于 NP 的基因表达分类器的性能特征
区分南亚人群中的病毒性 LRTI 和细菌性 LRTI 提出以下目标:1)
派生基于 NP 的基因表达分类器来区分病毒和细菌 LRTI,以及 2) 转移
基于 NP 的分类器可用于实时聚合酶链式反应 (RT-PCR) 检测,有可能成为
转化为针对呼吸道病毒和病毒的综合微生物学和分子检测的临床平台。
细菌病原体将被判定为患有病毒性 LRTI 和细菌性 LRTI。
RNA 测序将使用 NP 样本进行,机器学习方法将识别宿主基因。
区分病毒和细菌 LRTI 的表达分类器 基于 NP 的基因。
分类器将迁移到定制的 TaqMan 低密度阵列 (TLDA) 卡上,RT-PCR 将
将量化基因表达并进行逻辑回归以识别病毒与病毒。
该提案的预期结果是显着提高我们对细菌 LRTI 的了解。
新型基于 NP 的基因表达分类器可识别南亚地区的病毒与细菌 LRTI
成功完成这些目标后,我们计划将基于 NP 的分类器转化为
这项工作的长期目标是制定改进策略。
中低收入国家的抗菌药物使用并帮助应对全球抗菌药物耐药性危机。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAYANI TILLEKERATNE其他文献
GAYANI TILLEKERATNE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GAYANI TILLEKERATNE', 18)}}的其他基金
Host response-based diagnostics for identifying bacterial versus viral causes of lower respiratory infection in resource-limited settings
基于宿主反应的诊断,用于识别资源有限环境中下呼吸道感染的细菌与病毒原因
- 批准号:
10615892 - 财政年份:2022
- 资助金额:
$ 28.36万 - 项目类别:
A randomized controlled trial of a novel, evidence-based algorithm for managing lower respiratory tract infection in a resource-limited setting
一项基于证据的新型算法的随机对照试验,用于在资源有限的环境中管理下呼吸道感染
- 批准号:
10419987 - 财政年份:2022
- 资助金额:
$ 28.36万 - 项目类别:
Novel Diagnostics to Improve Antimicrobial Stewardship for Acute Respiratory Tract Infections in Resource-Limited Settings
改善资源有限环境下急性呼吸道感染抗菌药物管理的新型诊断方法
- 批准号:
10092816 - 财政年份:2017
- 资助金额:
$ 28.36万 - 项目类别:
Novel Diagnostics to Improve Antimicrobial Stewardship for Acute Respiratory Tract Infections in Resource-Limited Settings
改善资源有限环境下急性呼吸道感染抗菌药物管理的新型诊断方法
- 批准号:
9314348 - 财政年份:2017
- 资助金额:
$ 28.36万 - 项目类别:
相似国自然基金
二(苯乙烯基)酮类光敏抗菌剂的设计,合成及应用研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
土壤真菌群落对典型三唑类抗菌剂的抗药性响应特征和机制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
脑靶向新型反义抗菌剂递送系统的构建、评价及其递送机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于声动力的高效靶向抗菌剂开发及其用于幽门螺杆菌感染治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于呫吨酮的拟肽抗菌剂设计合成、抗菌活性和分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 28.36万 - 项目类别:
Development of Broad-Spectrum Cyclic Amphiphilic Peptides against Multidrug-Resistant Bacteria
抗多重耐药细菌的广谱环状两亲肽的开发
- 批准号:
10481745 - 财政年份:2022
- 资助金额:
$ 28.36万 - 项目类别:
Development of Broad-Spectrum Cyclic Amphiphilic Peptides against Multidrug-Resistant Bacteria
抗多重耐药细菌的广谱环状两亲肽的开发
- 批准号:
10685928 - 财政年份:2022
- 资助金额:
$ 28.36万 - 项目类别:
Host response-based diagnostics for identifying bacterial versus viral causes of lower respiratory infection in resource-limited settings
基于宿主反应的诊断,用于识别资源有限环境中下呼吸道感染的细菌与病毒原因
- 批准号:
10615892 - 财政年份:2022
- 资助金额:
$ 28.36万 - 项目类别:
A randomized controlled trial of a novel, evidence-based algorithm for managing lower respiratory tract infection in a resource-limited setting
一项基于证据的新型算法的随机对照试验,用于在资源有限的环境中管理下呼吸道感染
- 批准号:
10419987 - 财政年份:2022
- 资助金额:
$ 28.36万 - 项目类别: