Full Sail Ahead: How Membranes Move and Respond to Flow
全速前进:膜如何移动和响应流动
基本信息
- 批准号:10452911
- 负责人:
- 金额:$ 33.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectArterial Fatty StreakAtherosclerosisBiochemicalBiological ModelsBiological ProcessBiophysicsBlood PressureBlood VesselsBlood flowBone DensityCell LineCell membraneCell physiologyCellsComplexConfocal MicroscopyCouplingDevelopmentEndothelial CellsEnvironmentExtracellular DomainFrictionGlassGlypicanGoalsHealthHeat shock proteinsHeparan Sulfate ProteoglycanHoming BehaviorHumanIndividualLabelLateralLesionLipidsLiquid substanceMalignant NeoplasmsMeasuresMechanicsMediatingMembraneMembrane LipidsMembrane ProteinsMembrane Transport ProteinsMethodologyMicrofluidicsMissionModelingMolecularMotionMovementNeoplasm MetastasisNitric OxideNitric Oxide SynthaseOncogenesPathologyPhysicsPhysiologicalPlasma CellsPlayProcessProductionPropertyProtein SortingsProteinsProteoglycanPublishingReportingResearchRoleSignal PathwaySignal TransductionSignaling MoleculeSolidSorting - Cell MovementSurfaceTertiary Protein StructureTestingTissuesTranslatingTransmembrane TransportUnited States National Institutes of HealthVisualizationWorkangiogenesisaqueousbasebiophysical propertiescardiovascular healthcell motilitydrug discoveryexperienceexperimental studyextracellularfluid flowfluidityhealinginterestlenslink proteinmechanical stimulusmechanotransductionmembrane modelmonolayerneural growthnovel therapeuticsprotein functionprotein transportreconstitutionresponseself-renewalshear stresstumor
项目摘要
PROJECT SUMMARY
A remarkable feature of lipid membranes is their fluidity: they can self-heal, bend, and circulate.
Individual cells also experience and respond to the flows in their environment. Flow responses regulate diverse
processes such as blood pressure, bone density, and neural growth. This is particularly apparent in blood
vessels, where a monolayer of endothelial cells forms the interface between flowing blood and stationary
tissue. Correlation between regions of low flow and atherosclerotic plaques was observed a century ago,
leading to the hypothesis that shear flow impacts endothelial cell function. Understanding how cells accomplish
mechanotransduction of shear stress into cellular signals is of wide interest. However, the molecular
determinants behind flow mechanotransduction remain unclear. Particularly, we lack information on the lateral
movement of extracellular membrane proteins located at the cell-fluid interface. While flow has been observed
to transport membrane proteins, how this transport affects protein function and cell responses remains
unknown.
The goal of the proposed studies is to quantitatively measure the physical interactions specific to lipid
membranes that determine how lipids and proteins move in response to flow and test whether flow transport of
a membrane protein activates intracellular signaling in endothelial cells. Our central hypothesis is that
physiologically significant protein and lipid concentration gradients arise from physical interactions between
fluid flow and complex membranes. This hypothesis is based on the premise that extracellular lipid-anchored
proteoglycans like glypican-1 can be transported along the plasma membrane by external flow, with the
aqueous part of the protein acting as a molecular sail. We will accomplish three specific aims: Our first aim is
to identify the fundamental properties and principles that govern flow transport of membrane-linked proteins in
model membranes and to build a model to predict protein motion in physiological contexts. In the second aim,
we will determine how the flow-mediated lateral transport of a physiologically important membrane protein
(glypican-1) initiates the short-term flow response in endothelial cells. In our third aim, we will investigate how
lipid sorting by flow contributes to flow signaling in our model system and living cell membranes.
Our approach is to conduct parallel experiments in model membranes and living cells, allowing us to
directly relate physiological function to molecular biophysics. The experiments rely on the PI's expertise using
experimental microfluidics and confocal microscopy to determine fundamental membrane properties. While the
model protein studied here is specific to endothelial cells, the principles of fluid mechanics that we will uncover
are universal. We, therefore, anticipate that our models will apply to multiple cell lines and flow conditions, and
will lay the groundwork for future research directions.
项目概要
脂质膜的一个显着特征是它们的流动性:它们可以自我修复、弯曲和循环。
单个细胞也会经历环境中的流动并对其做出反应。流量响应调节多样
血压、骨密度和神经生长等过程。这在血液中尤为明显
血管,单层内皮细胞形成流动血液和静止血液之间的界面
组织。一个世纪前就观察到低流量区域与动脉粥样硬化斑块之间的相关性,
导致剪切流影响内皮细胞功能的假设。了解细胞如何完成任务
将剪切应力机械转导为细胞信号引起了广泛的兴趣。然而,分子
流动机械转导背后的决定因素仍不清楚。特别是,我们缺乏横向信息
位于细胞-液体界面的细胞外膜蛋白的运动。虽然观察到流量
为了运输膜蛋白,这种运输如何影响蛋白质功能和细胞反应仍然存在
未知。
拟议研究的目标是定量测量脂质特有的物理相互作用
确定脂质和蛋白质如何响应流动而移动的膜,并测试流动传输是否
膜蛋白激活内皮细胞的细胞内信号传导。我们的中心假设是
具有生理意义的蛋白质和脂质浓度梯度是由之间的物理相互作用产生的
流体流动和复杂的膜。该假说基于细胞外脂质锚定的前提
磷脂酰肌醇蛋白聚糖(glypican-1)等蛋白聚糖可以通过外部流动沿着质膜运输,
蛋白质的水部分充当分子帆。我们将实现三个具体目标: 我们的第一个目标是
确定控制膜连接蛋白流动运输的基本特性和原理
模拟膜并建立模型来预测生理环境中的蛋白质运动。在第二个目标中,
我们将确定生理上重要的膜蛋白如何通过流介导的横向运输
(磷脂酰肌醇蛋白聚糖-1) 启动内皮细胞的短期血流反应。在我们的第三个目标中,我们将研究如何
通过流进行的脂质分选有助于我们的模型系统和活细胞膜中的流信号传导。
我们的方法是在模型膜和活细胞中进行平行实验,使我们能够
将生理功能与分子生物物理学直接联系起来。实验依赖于 PI 的专业知识,使用
实验微流体和共焦显微镜以确定基本的膜特性。虽然
这里研究的模型蛋白质是内皮细胞特有的,我们将揭示流体力学的原理
是通用的。因此,我们预计我们的模型将适用于多种细胞系和流动条件,并且
将为未来的研究方向奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aurelia R Honerkamp-Smith其他文献
Aurelia R Honerkamp-Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aurelia R Honerkamp-Smith', 18)}}的其他基金
Full Sail Ahead: How Membranes Move and Respond to Flow
全速前进:膜如何移动和响应流动
- 批准号:
10630916 - 财政年份:2022
- 资助金额:
$ 33.61万 - 项目类别:
相似海外基金
Endothelial Metabolic Reprogramming by Interferon-gamma in Coronary Artery Disease
干扰素γ在冠状动脉疾病中的内皮代谢重编程
- 批准号:
10662850 - 财政年份:2023
- 资助金额:
$ 33.61万 - 项目类别:
Regulation of Vascular Calcification by Adventitial Endothelial Cells
外膜内皮细胞对血管钙化的调节
- 批准号:
10642619 - 财政年份:2023
- 资助金额:
$ 33.61万 - 项目类别:
Investigating mechanisms of oxidized phospholipid-mediated dysregulation of regulatory T cells in atherosclerosis
研究动脉粥样硬化中氧化磷脂介导的调节性 T 细胞失调的机制
- 批准号:
10648711 - 财政年份:2023
- 资助金额:
$ 33.61万 - 项目类别:
Endothelial Metabolic Reprogramming by Interferon-gamma in Coronary Artery Disease
干扰素γ在冠状动脉疾病中的内皮代谢重编程
- 批准号:
10662850 - 财政年份:2023
- 资助金额:
$ 33.61万 - 项目类别: