Informatics and Machine Learning Modules for Research Planning, Scheduling, Simulation, and Optimization in the ASPIRE Autonomous Laboratory
用于 ASPIRE 自主实验室研究规划、调度、模拟和优化的信息学和机器学习模块
基本信息
- 批准号:10448106
- 负责人:
- 金额:$ 56.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsArtificial IntelligenceAutomationBenchmarkingBiological AssayBiological TestingChemicalsChemistryCollectionCommunicationCommunitiesComplexComputer AssistedComputer softwareConsumptionDataData ScienceDecision MakingDevelopmentDiseaseDocumentationEvaluationFamilyFeedbackGoalsGraphHealthHumanInformaticsInfrastructureLaboratoriesLearningLearning ModuleLiteratureMachine LearningManualsMedicineModelingMolecularNational Center for Advancing Translational SciencesPerformancePharmaceutical ChemistryPharmacologic SubstanceProceduresProcessPropertyPublishingReactionReadabilityRecommendationResearchRouteRunningScheduleStructureSynthesis ChemistryTherapeuticTimeTranslationsTwin Multiple BirthVisualizationVisualization softwareWorkapplication programming interfacebasechemical reactionchemical synthesischeminformaticscostdata-driven modeldeep learningdesigndigitaldrug candidatedrug discoveryexperimental studygraphical user interfaceimprovedinnovationinterestknowledge graphlead optimizationnegative affectnovelnovel therapeuticsopen sourceopen source tooloperationpreclinical developmentpredictive modelingprocess optimizationprogramsresponsescreeningsimulationsmall moleculesoftware developmenttheoriestherapeutic candidatetoolvirtual
项目摘要
PROJECT SUMMARY
Access to complex chemical matter (e.g., small molecule drug candidates) is a core requirement
for testing biological hypotheses and probing human health. Current approaches to chemical
synthesis rely on time-consuming planning and labor-intensive manual synthesis, which is a
rate-limiting step in the discovery of new functional molecules. This collaborative project
comprises the development of several virtual modules to support the multi-step chemical
synthesis of new molecules in autonomous laboratories. These modules are designed to
benefit traditional synthetic chemists in addition to automation chemists using the integrated
hardware platform being developed by the ASPIRE team at NCATS. Computer-aided synthesis
planning can be viewed as a hierarchical process of elaboration starting from the list of
molecules of interest: (1) retrosynthetic planning to identify suitable starting materials and
intermediates, (2) reaction condition recommendation to identify the conditions with which each
reaction step should be run, (3) translation of hypothetical reaction steps into action sequences
executable on automated hardware. Optional but valuable components include (4) recording
procedures through an experimental planning module, (5) optimization of the timing and order
of action sequences to most efficiently synthesize multiple synthetic targets via a digital twin of
the platform, and (6) the iterative optimization of process parameters based on experimental
responses in a feedback loop. This program will address each of these needs through the
development of new software solutions employing state of the art algorithms in graph network
theory, cheminformatics, deep learning for chemistry, and optimization. Software modules will
be written using established software development best practices for ease of cross-platform
deployment (via containerization) and long-term maintainability (via extensive
documentation). Further, each module will be deployed as an independent microservice with
a common application programming interface (API) format for inter-module communication and
integration with existing NCATS modules, including graphical user interfaces. These efforts will
be accomplished through close partnership between MIT and NCATS to enhance the overall
capabilities of the NCATS ASPIRE platform.
项目概要
获取复杂化学物质(例如小分子候选药物)是核心要求
用于测试生物学假设和探索人类健康。目前的化学方法
合成依赖于耗时的计划和劳动密集型的手动合成,这是一个
发现新功能分子的限速步骤。本次合作项目
包括开发多个虚拟模块以支持多步化学
在自主实验室中合成新分子。这些模块旨在
除了使用集成的自动化化学家之外,传统合成化学家也受益
硬件平台由 NCATS 的 ASPIRE 团队开发。计算机辅助合成
规划可以被视为从清单开始的分层阐述过程
感兴趣的分子:(1)逆合成计划以确定合适的起始材料和
中间体,(2)反应条件建议,以确定每个中间体的条件
应运行反应步骤,(3) 将假设的反应步骤转换为操作序列
在自动化硬件上可执行。可选但有价值的组件包括 (4) 录音
通过实验计划模块的程序,(5)时间和顺序的优化
的动作序列,通过数字孪生最有效地合成多个合成目标
(6)基于实验的工艺参数迭代优化
反馈循环中的响应。该计划将通过
在图网络中采用最先进的算法开发新的软件解决方案
理论、化学信息学、化学深度学习和优化。软件模块将
使用已建立的软件开发最佳实践进行编写,以便于跨平台
部署(通过容器化)和长期可维护性(通过广泛的
文档)。此外,每个模块将部署为独立的微服务
用于模块间通信的通用应用程序编程接口(API)格式
与现有 NCATS 模块集成,包括图形用户界面。这些努力将
通过麻省理工学院和 NCATS 之间的密切合作来实现,以提高整体
NCATS ASPIRE 平台的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Connor Wilson Coley其他文献
Connor Wilson Coley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Connor Wilson Coley', 18)}}的其他基金
Informatics and Machine Learning Modules for Research Planning, Scheduling, Simulation, and Optimization in the ASPIRE Autonomous Laboratory
用于 ASPIRE 自主实验室研究规划、调度、模拟和优化的信息学和机器学习模块
- 批准号:
10642813 - 财政年份:2022
- 资助金额:
$ 56.25万 - 项目类别:
Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
- 批准号:
10430402 - 财政年份:2022
- 资助金额:
$ 56.25万 - 项目类别:
Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
- 批准号:
10594577 - 财政年份:2022
- 资助金额:
$ 56.25万 - 项目类别:
Accelerated discovery of synthetic polymers for ribonucleoprotein delivery through the integration of active learning, machine learning, and polymer science
通过整合主动学习、机器学习和聚合物科学,加速发现用于核糖核蛋白递送的合成聚合物
- 批准号:
10195432 - 财政年份:2021
- 资助金额:
$ 56.25万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 56.25万 - 项目类别:
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
- 批准号:
10655877 - 财政年份:2023
- 资助金额:
$ 56.25万 - 项目类别:
Connecting Latinos en Pareja: A Couples-based HIV Prevention Intervention for Latino Male Couples
连接拉丁裔与帕雷哈:针对拉丁裔男性夫妇的基于夫妇的艾滋病毒预防干预措施
- 批准号:
10706860 - 财政年份:2023
- 资助金额:
$ 56.25万 - 项目类别:
Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning
通过人在环深度学习早期检测胰腺癌
- 批准号:
10592060 - 财政年份:2023
- 资助金额:
$ 56.25万 - 项目类别:
mAnaging siCkle CELl disease through incReased AdopTion of hydroxyurEa in Nigeria (ACCELERATE)
在尼日利亚通过增加羟基脲的使用来控制镰状细胞病(加速)
- 批准号:
10638598 - 财政年份:2023
- 资助金额:
$ 56.25万 - 项目类别: