Functional properties of amacrine cells in the mammalian retina
哺乳动物视网膜无长突细胞的功能特性
基本信息
- 批准号:10446557
- 负责人:
- 金额:$ 40.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAmacrine CellsBackBlindnessBrainCalciumCell ExtractsCellsCharacteristicsChemical SynapseConeCoupledDataDetectionElectrical SynapseElectrophysiology (science)EyeGap JunctionsGene ExpressionGoalsImageIn VitroInner Plexiform LayerInterneuronsInvestigationKnowledgeLabelLearningLightMapsMeasuresMicroscopeMolecularMorphologyMotionMusNOS1 geneNeuronsNeurotransmittersNitric Oxide SynthaseNitric Oxide Synthase Type IOutputPathologicPhotoreceptorsPhysiologicalPlayPopulationPreparationProcessPropertyProsthesisResearchRetinaRetinal Ganglion CellsRoleSignal TransductionSliceStimulusSynapsesTestingTracerVisionVisualWorkantagonistcell typechemical releaseganglion cellimaging approachmolecular imagingmotion sensitivityneural networkneuronal cell bodyneurotransmissionnovelnovel therapeuticsobject motionoptogeneticspatch clamppostsynapticreceptive fieldrelating to nervous systemresponseretinal neuronsignal processingsoundspatiotemporaltransmission processvisual processing
项目摘要
PROJECT SUMMARY
This project proposes to study the roles of specific amacrine cells (ACs) in the visual signal
processing performed by the mammalian retina. Electrophysiological recordings of light evoked
activity will be made from ACs, ganglion cells (GCs), and bipolar cells in intact in vitro whole-
mount and slice preparations of mouse retina maintained at photopic adaptation levels. The
functional properties of the cells will be probed using images projected onto the photoreceptors
through the microscope objective. Patch-clamp recordings from amacrine and ganglion cell
somas will be performed to measure the stimulus-evoked postsynaptic currents, postsynaptic
potentials, and spiking responses. The project focusses on the elucidating the synaptic
mechanisms underlying the receptive field properties of 3 genetically labelled amacrine cell types.
Aims 1 and 2 examine the functional properties of two types of amacrine cells, so called NOS-1
and NOS-2 amacrine cells, which are identified by their expression of nitric-oxide synthase
(NOS). Aim 1 will test the hypothesis that the NOS-1 ACs are key interneurons for controlling the
strength of surround antagonism in GCs at scotopic light levels and that they exert their effects
via GABAergic synaptic connections to AII ACs. We will make dual recordings between the NOS-
1 ACs and specific types of GCs, to directly test for indirect synaptic connections consistent with
the proposed circuit. Aim 2 will examine the role of NOS-2 ACs in conferring motion-sensitivity to
specific type of small-field GCs in the mouse. We will use optogenetic stimulation of ChR2
expressing NOS ACs to identify the postsynaptic targets. The postsynaptic targets will be
identified morphologically and physiologically and inputs arising from NOS-2 ACs will be
confirmed by paired recordings. Aim 3 focuses on a novel amacrine cell type that is one of 2 AC
types that can be identified by their expression of the gene Gbx2. We will focus on the Gbx2+
ACs that stratify in sublamina 3 (S3) of the inner plexiform layer. The S3-Gbx2+ ACs are highly
unusual because they appear to express none of the conventional inhibitory or excitatory
neurotransmitters, indicating that they represent novel populations of so-called non-GABAergic,
non-glycinergic (nGnG) ACs. Preliminary data show that these nGnG ACs are tracer coupled to
bipolar cells. We will quantify the spatio-temporal receptive field properties of these nGnG S3-
Gbx2+ ACs and will test the hypothesis that they make output via electrical synapses with bipolar
cells. To do so, we will make patch-clamp recordings from cone bipolar cells in slice and measure
depolarizing responses elicited by optogenetic stimulation (ChR2 expression) of the S3-Gbx2+
ACs. Overall, the results will reveal the functional properties and connectivity of the three AC
types and will determine their roles in visual processing in the retina.
项目概要
该项目旨在研究特定无长突细胞(AC)在视觉信号中的作用
由哺乳动物视网膜进行的处理。光诱发的电生理记录
活性将由完整的体外全细胞中的 AC、神经节细胞 (GC) 和双极细胞产生
小鼠视网膜的安装和切片制剂保持在明视适应水平。这
将使用投射到感光器上的图像来探测细胞的功能特性
通过显微镜物镜。无长突和神经节细胞的膜片钳记录
将进行体细胞测量刺激诱发的突触后电流、突触后电流
潜力和尖峰反应。该项目的重点是阐明突触
3种基因标记的无长突细胞类型感受野特性的潜在机制。
目标 1 和 2 检查两种无长突细胞(即 NOS-1)的功能特性
和 NOS-2 无长突细胞,通过一氧化氮合酶的表达来识别
(NOS)。目标 1 将检验以下假设:NOS-1 AC 是控制
GC 在暗光水平下周围拮抗作用的强度及其发挥作用
通过与 AII AC 的 GABA 能突触连接。我们将在 NOS- 之间进行双重录音
1 AC 和特定类型的 GC,直接测试间接突触连接,与
所建议的电路。目标 2 将研究 NOS-2 AC 在赋予运动敏感性方面的作用
小鼠体内特定类型的小视野 GC。我们将使用 ChR2 的光遗传学刺激
表达 NOS AC 来识别突触后目标。突触后目标将是
从形态学和生理学角度进行识别,NOS-2 AC 产生的输入将被
通过配对录音证实。目标 3 重点关注一种新型无长突细胞类型,它是 2 AC 中的一种
可以通过 Gbx2 基因的表达来识别的类型。我们将重点关注 Gbx2+
在内丛状层的亚板 3 (S3) 中分层的 AC。 S3-Gbx2+ AC 高度
不寻常,因为它们似乎不表达任何传统的抑制性或兴奋性
神经递质,表明它们代表了所谓的非 GABA 能的新群体,
非甘氨酸能 (nGnG) AC。初步数据表明,这些 nGnG AC 与示踪剂耦合
双极细胞。我们将量化这些 nGnG S3-的时空感受野特性
Gbx2+ AC 并将测试它们通过双极电突触进行输出的假设
细胞。为此,我们将从切片中的视锥双极细胞进行膜片钳记录并测量
S3-Gbx2+ 的光遗传学刺激(ChR2 表达)引起的去极化反应
空调。总体而言,结果将揭示三个 AC 的功能特性和连接性
类型并将决定它们在视网膜视觉处理中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Rowland Taylor其他文献
William Rowland Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Rowland Taylor', 18)}}的其他基金
Neural mechanisms that detect defocus in the retina
检测视网膜散焦的神经机制
- 批准号:
10700107 - 财政年份:2022
- 资助金额:
$ 40.09万 - 项目类别:
Functional properties of amacrine cells in the mammalian retina
哺乳动物视网膜无长突细胞的功能特性
- 批准号:
10600073 - 财政年份:2022
- 资助金额:
$ 40.09万 - 项目类别:
Neural mechanisms that detect defocus in the retina
检测视网膜散焦的神经机制
- 批准号:
10527088 - 财政年份:2022
- 资助金额:
$ 40.09万 - 项目类别:
Biophysical limitations to signal transmission in the mammalian retina
哺乳动物视网膜信号传输的生物物理限制
- 批准号:
7019323 - 财政年份:2006
- 资助金额:
$ 40.09万 - 项目类别:
Biophysical limitations to signal transmission in the mammalian retina
哺乳动物视网膜信号传输的生物物理限制
- 批准号:
7167419 - 财政年份:2006
- 资助金额:
$ 40.09万 - 项目类别:
Biophysical limitations to signal transmission in the mammalian retina
哺乳动物视网膜信号传输的生物物理限制
- 批准号:
7341614 - 财政年份:2006
- 资助金额:
$ 40.09万 - 项目类别:
Biophysical limitations to signal transmission in the mammalian retina
哺乳动物视网膜信号传输的生物物理限制
- 批准号:
7583977 - 财政年份:2006
- 资助金额:
$ 40.09万 - 项目类别:
相似国自然基金
星爆无长突细胞在屈光发育及近视形成中的作用
- 批准号:82371090
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
可见紫光抑制小鼠视网膜VIP能无长突细胞发育增加近视易感性的作用机制研究
- 批准号:82371084
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
光信号通过猴眼无长突细胞调控巩膜塑形与近视机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
Porf-2介导视神经损伤后无长突细胞Zn2+失稳态影响视网膜神经节细胞存活和轴突再生的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无长突细胞“NO-Zn2+”信号调控视神经损伤、修复及再生的分子机制
- 批准号:81870657
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Functional properties of amacrine cells in the mammalian retina
哺乳动物视网膜无长突细胞的功能特性
- 批准号:
10600073 - 财政年份:2022
- 资助金额:
$ 40.09万 - 项目类别:
A novel mechanism for synapse localization in the retina
视网膜突触定位的新机制
- 批准号:
10152981 - 财政年份:2020
- 资助金额:
$ 40.09万 - 项目类别:
A novel mechanism for synapse localization in the retina
视网膜突触定位的新机制
- 批准号:
10308520 - 财政年份:2020
- 资助金额:
$ 40.09万 - 项目类别: