Role of the mitochondrial LonP1 in myocardial ischemia and reperfusion injury protection
线粒体LonP1在心肌缺血再灌注损伤保护中的作用
基本信息
- 批准号:10446477
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAcuteAnimalsAntioxidantsAttenuatedBioenergeticsCardiacCardiac MyocytesCause of DeathCell Culture TechniquesCell DeathCellular biologyCessation of lifeChronicClinicalComplexDataDoseDown-RegulationElectron TransportEventFailureFibrosisFree RadicalsGelGenerationsGlycyrrhetinic AcidGoalsHeartHeart InjuriesHeart failureHistologicHomeostasisHypoxiaIn VitroInfarctionInfiltrationInflammatoryInterventionIschemiaIschemic PreconditioningKnock-outKnockout MiceMediatingMediator of activation proteinMitochondriaMitochondrial ProteinsMolecularMolecular BiologyMusMuscle CellsMyocardialMyocardial InfarctionMyocardial IschemiaOutcomeOxidative StressPatientsPeptide HydrolasesPhysiologicalProductionProteomicsPublishingQuality ControlReactive Oxygen SpeciesRegulationReperfusion InjuryReperfusion TherapyReportingRoleSignal TransductionSiteSuperoxidesTechniquesTestingTherapeuticTissuesTransgenic OrganismsUnited StatesWorkbasebiological adaptation to stresscardioprotectioneffective therapyheart functionhigh throughput screeningimprovedin vivoinhibitormouse modelmutantmyocardial injurynovelnovel therapeuticsoverexpressionoxidative damagepreventproteostasissmall moleculetherapeutic evaluationtool
项目摘要
PROJECT SUMMARY
Ischemia-reperfusion (IR) injury is a significant challenge in treating myocardial infarction (MI), the leading
cause of death in the United States. Mitochondrial reactive oxygen species (mtROS) generated by electron
transport chain (ETC) Complex-I are the principal mediators of IR injury. Excess mtROS generated during
early IR triggers vicious cycles of free radical production promoting cardiomyocyte death. Therefore,
understanding the early molecular events of reperfusion will provide new targets for developing novel
interventions for limiting cardiac injury. Our published findings show that LonP1- a major mitochondrial stress
response protease mitigates oxidative stress-induced damage during early IR; therefore, LonP1 could be a
promising target for attenuating reperfusion injury. Our long-term goal is to leverage the mitochondrial protein
quality control mechanisms of LonP1 as a pivotal point to develop therapeutic strategies for mitigating IR injury
and post MI- heart failure. Our published findings show that increased LonP1 expression in the heart induced
by ischemic preconditioning (IPC) or transgenic overexpression (LonTg) reduced IR injury and favors
cardioprotection. Whereas, LonP1 downregulation (LONP1+/-) abrogated IPC-mediated cardioprotection.
Importantly, LonTg hearts showed reduced levels of Complex-I subunits (but not Complex II-V subunit) and
oxidative damage during early IR (within 30 min reperfusion) compared to NTg controls. Conversely, our
additional findings show that LonP1 downregulation in cardiomyocytes upregulated Complex-I activity,
increased superoxide levels, and showed early reperfusion-induced cell death activation. In addition, we have
identified a small molecule activator of LonP1 that significantly reduced hypoxia-reoxygenation (H/R) induced
myocyte death in a dose-dependent manner in vitro. With additional data on IR-induced acetylation of
Complex-I matrix subunits and LonP1 dependent Complex-I remodeling during IR, we hypothesize that LonP1
mitigates myocardial injury by suppressing excess mtROS generation through tight regulation of Complex-I
during early IR. We will test our hypothesis by the following specific aims: Aim 1 will delineate the
mechanism(s) by which LonP1 modulates Complex-I levels, activity and reduces oxidative stress during IR.
Aim 2 will test that LonP1 remodels Complex-I and its associated supercomplexes by degrading IR-induced
post-translationally modified (PTM) Complex-I matrix subunits, thereby reduce mtROS during early IR. Aim 3
will determine the therapeutic potential of LonP1 activators in treating myocardial IR injury in vivo. By
determining the molecular mechanisms of LonP1-mediated cardioprotection and the therapeutic potential of
LonP1 activators, we will define the role of LonP1 in cardioprotection and develop novel therapeutic tools and
strategies to mitigate IR injury.
项目概要
缺血再灌注(IR)损伤是治疗心肌梗死(MI)的一个重大挑战,心肌梗死是主要的疾病
美国的死因。电子产生的线粒体活性氧(mtROS)
转运链 (ETC) 复合体-I 是 IR 损伤的主要介质。期间产生过量的 mtROS
早期IR会引发自由基产生的恶性循环,从而促进心肌细胞死亡。所以,
了解再灌注的早期分子事件将为开发新的药物提供新的目标
限制心脏损伤的干预措施。我们发表的研究结果表明,LonP1——一种主要的线粒体应激
反应蛋白酶减轻早期 IR 期间氧化应激引起的损伤;因此,LonP1 可能是
减轻再灌注损伤的有希望的目标。我们的长期目标是利用线粒体蛋白
LonP1 的质量控制机制是制定减轻 IR 损伤治疗策略的关键点
以及 MI 后心力衰竭。我们发表的研究结果表明,心脏中 LonP1 表达增加会诱导
通过缺血预适应 (IPC) 或转基因过度表达 (LonTg) 减少 IR 损伤并有利于
心脏保护。然而,LonP1 下调 (LONP1+/-) 消除了 IPC 介导的心脏保护作用。
重要的是,LonTg 心脏显示复合物 I 亚基水平降低(但复合物 II-V 亚基水平不降低)并且
与 NTg 对照相比,早期 IR(再灌注 30 分钟内)期间的氧化损伤。相反,我们的
其他研究结果表明,心肌细胞中 LonP1 的下调上调了 Complex-I 的活性,
超氧化物水平增加,并显示出早期再灌注诱导的细胞死亡激活。此外,我们还有
鉴定出 LonP1 的小分子激活剂,可显着减少缺氧-复氧 (H/R) 诱导的
体外心肌细胞死亡呈剂量依赖性。具有有关 IR 诱导的乙酰化的附加数据
IR 期间 Complex-I 矩阵亚基和 LonP1 依赖的 Complex-I 重塑,我们假设 LonP1
通过严格调节 Complex-I 抑制过量 mtROS 生成,从而减轻心肌损伤
在早期 IR 期间。我们将通过以下具体目标来检验我们的假设: 目标 1 将描述
LonP1 调节 Complex-I 水平、活性并减少 IR 期间氧化应激的机制。
目标 2 将测试 LonP1 通过降解 IR 诱导的复合物-I 及其相关超复合物来重塑
翻译后修饰 (PTM) Complex-I 基质亚基,从而减少早期 IR 期间的 mtROS。目标 3
将确定 LonP1 激活剂在体内治疗心肌 IR 损伤中的治疗潜力。经过
确定 LonP1 介导的心脏保护的分子机制及其治疗潜力
LonP1激活剂,我们将定义LonP1在心脏保护中的作用并开发新型治疗工具和
减轻IR损伤的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venkatesh Sundararajan其他文献
Venkatesh Sundararajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venkatesh Sundararajan', 18)}}的其他基金
Role of the mitochondrial LonP1 in myocardial ischemia and reperfusion injury protection
线粒体LonP1在心肌缺血再灌注损伤保护中的作用
- 批准号:
10640920 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
相似国自然基金
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
建立脑内急性基因编辑的孤独症非人灵长类动物模型
- 批准号:
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:专项基金项目
氨转运蛋白Rhcg在急性肝衰竭动物氨致脑水肿发生中的作用机制
- 批准号:
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
多肽纳米纤维水凝胶对灵长类动物急性脊髓损伤后脱髓鞘和再髓鞘化的保护作用及其机制
- 批准号:81972064
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
FOXA2对SARA引起的反刍动物肝脏炎症的调节作用与机制研究
- 批准号:31872528
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Targeting gut brain-signaling to reduce cocaine seeking behaviors
针对肠道大脑信号传导以减少可卡因寻求行为
- 批准号:
10733638 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
HDAC3 as a therapeutic target for intracerebral hemorrhage
HDAC3作为脑出血的治疗靶点
- 批准号:
10701321 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Role of IL-17 receptor A in aging bone remodeling
IL-17受体A在衰老骨重塑中的作用
- 批准号:
10719356 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别: