Chemically Tunable Mucins to Probe Pathogenic Function in the Epithelial Milieu
化学可调节粘蛋白探测上皮环境中的致病功能
基本信息
- 批准号:10441134
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcetylgalactosamineAddressAdhesionsAffectAmino AcidsAnimal SourcesBindingBiochemicalBiocompatible MaterialsBiologicalBiological AssayBiological ProcessCandida albicansCarbohydrate ChemistryCell surfaceCellsChemicalsCuesCystic FibrosisDNADiseaseEnzyme-Linked Immunosorbent AssayEnzymesEpithelialFamilyFucoseFucosyltransferaseGelGene ExpressionGlycoproteinsHandHealthHeterogeneityHumanHydration statusHydrogelsImmuneIncubatedInfectionInflammationLectinLengthLightLivestockLubricationMalignant NeoplasmsMediatingMetabolicMethodsMicrobeMicrobial BiofilmsMicroscopicMicroscopyModificationMolecularMolecular ConformationMolecular StructureMovementMucinsMucous body substanceOutcomePathogenicityPathway interactionsPatternPeptide HydrolasesPeptidesPolymersPolysaccharidesPropertyProteinsPseudomonas aeruginosaPublishingRNA SplicingReplacement TherapyResearchResearch PersonnelRespiratory Tract InfectionsRodRoleSaltsSerineSialic AcidsSialyltransferasesSourceStaphylococcus aureusStructureStructure-Activity RelationshipTechniquesTherapeuticThreonineTissuesTrisaccharidesVariantVertebral columnVirulenceWaterWorkanimal tissueantimicrobialasthmatic patientchemical synthesisdensitydesignfundamental researchglycosylationinterdisciplinary approachmicrobiomemonomerpathogenpathogenic microbepolymerizationprotein expressionsugartraitunnatural amino acids
项目摘要
Abstract
Human epithelial tissues are essential biological barriers that secrete a unique hydrogel known as mucus.
Tissues generate distinct types of mucus that provide specific biological functions like hydration, pathogen
defense, and mediating the movement substances toward the cell surface. The major component of mucus,
mucin proteins, is critical for gel structure and function. Mucins are a diverse family of 20+ proteins characterized
by a large, rod-like domain rich serine/threonine with attached saccharides, or glycans. Molecular-level mucus
studies have been challenging due to heterogeneous glycan patterns that are tissue and species specific, as
well as varied protein expression levels and splicing that result in structures with varied lengths and sequences.
Misregulation of mucin expression, splicing, and glycosylation results in altered structures that may affect
biological function with outcomes relevant to infection, inflammation, and cancer. Researchers typically utilize
mucins isolated from farm animal sources for such studies, but this source suffers from batch-to-batch variation,
structures that are not chemically defined and have non-human glycan patterns that cannot be systematically
altered. Currently, there is an unmet need for chemically-defined mucins that can be tuned at the molecular level
and possess human glycosylation patterns. Such materials are essential to probe the role of these vital
biomaterials in health and disease. The proposed research will address this critical need by developing a method
to prepare synthetic human mucins, which will be applied to probe glycan-pathogen interactions. Techniques
from carbohydrate chemistry, amino acid N-carboxyanhydride (NCA) polymerization, and enzymatic
glycosylation, will be combined to generate materials with fully tunable properties. I will generate a panel of
chemically-defined mucin glycopolypeptides with varied lengths, amino acid compositions, glycosylation
densities, and glycan structures. Structure design will be guided by published glycomic analysis of native human
mucins implicated in airway infections. All glycopolypeptides will be fully characterized for physicochemical
properties using a variety of spectroscopic, microscopic, and biochemical methods. Mucins and their glycans
have previously been shown to affect activity of pathogenic microbes such as adhesion, biofilm formation, and
virulence traits. Synthetic mucins will be applied to reveal how glycan presentation affects these pathogenic
functions. Such studies are not possible with native mucins since glycosylation cannot be controlled and is
typically not even characterized. Overall, I aim to shed light on the molecular structure-function relationship
between mucins and microbes. This interdisciplinary approach will combine techniques from multiple fields to
answer important questions about infection that cannot be undertaken by biological methods alone. The
proposed materials could have therapeutic applications as antimicrobials or in muco-replacement therapies.
抽象的
人类上皮组织是重要的生物屏障,可分泌一种称为粘液的独特水凝胶。
组织产生不同类型的粘液,提供特定的生物功能,如水合、病原体
防御,并介导物质向细胞表面的运动。粘液的主要成分,
粘蛋白对于凝胶结构和功能至关重要。粘蛋白是一个由 20 多种蛋白质组成的多样化家族
由富含丝氨酸/苏氨酸的大的棒状结构域与附着的糖或聚糖组成。分子级粘液
由于组织和物种特异性的异质聚糖模式,研究一直具有挑战性,如
以及不同的蛋白质表达水平和剪接导致不同长度和序列的结构。
粘蛋白表达、剪接和糖基化的错误调节会导致结构改变,从而可能影响
具有与感染、炎症和癌症相关的生物学功能。研究人员通常利用
从农场动物来源中分离出粘蛋白用于此类研究,但该来源存在批次间差异,
未化学定义且具有无法系统地分析的非人类聚糖模式的结构
改变了。目前,对可以在分子水平上进行调整的化学定义的粘蛋白的需求尚未得到满足
并具有人类糖基化模式。这些材料对于探索这些重要的作用至关重要
健康和疾病中的生物材料。拟议的研究将通过开发一种方法来解决这一关键需求
制备合成人类粘蛋白,用于探测聚糖-病原体相互作用。技巧
来自碳水化合物化学、氨基酸 N-羧酸酐 (NCA) 聚合和酶促
糖基化,将被结合起来生成具有完全可调特性的材料。我将生成一个面板
具有不同长度、氨基酸组成、糖基化的化学定义粘蛋白糖多肽
密度和聚糖结构。结构设计将以已发表的天然人类糖组分析为指导
与气道感染有关的粘蛋白。所有糖多肽都将得到全面的理化表征
使用各种光谱、显微镜和生化方法来确定特性。粘蛋白及其聚糖
先前已被证明会影响病原微生物的活性,例如粘附、生物膜形成和
毒力特征。合成粘蛋白将用于揭示聚糖的呈现如何影响这些致病菌
功能。对于天然粘蛋白来说,此类研究是不可能的,因为糖基化无法控制并且是
通常甚至没有特征。总的来说,我的目标是阐明分子结构与功能的关系
粘蛋白和微生物之间。这种跨学科方法将结合多个领域的技术
回答有关感染的重要问题,这些问题不能仅通过生物学方法来解决。这
所提出的材料可以作为抗菌剂或粘膜替代疗法具有治疗应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victoria Rose Kohout其他文献
Victoria Rose Kohout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victoria Rose Kohout', 18)}}的其他基金
Chemically Tunable Mucins to Probe Pathogenic Function in the Epithelial Milieu
化学可调节粘蛋白探测上皮环境中的致病功能
- 批准号:
10621951 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Chemically Tunable Mucins to Probe Pathogenic Function in the Epithelial Milieu
化学可调节粘蛋白探测上皮环境中的致病功能
- 批准号:
10621951 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
Role of lipid rafts and phosphoinositides in E. histolytica virulence
脂筏和磷酸肌醇在溶组织内阿米巴毒力中的作用
- 批准号:
7459900 - 财政年份:2001
- 资助金额:
$ 6.76万 - 项目类别:
Role of lipid rafts and phosphoinositides in E. histolytica virulence
脂筏和磷酸肌醇在溶组织内阿米巴毒力中的作用
- 批准号:
7884312 - 财政年份:2001
- 资助金额:
$ 6.76万 - 项目类别:
Role of lipid rafts and phosphoinositides in E. histolytica virulence
脂筏和磷酸肌醇在溶组织内阿米巴毒力中的作用
- 批准号:
7652365 - 财政年份:2001
- 资助金额:
$ 6.76万 - 项目类别:
Role of lipid rafts and phosphoinositides in E. histolytica virulence
脂筏和磷酸肌醇在溶组织内阿米巴毒力中的作用
- 批准号:
7317969 - 财政年份:1999
- 资助金额:
$ 6.76万 - 项目类别: