A Geometric and Morphoelastic Study of Aortic Dissection Evolution
主动脉夹层演化的几何和形态弹性研究
基本信息
- 批准号:10441529
- 负责人:
- 金额:$ 57.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Algorithmic AnalysisAlgorithmsAngiographyAortaBehaviorBiomechanicsCaliberCessation of lifeCharacteristicsClassificationClinicalClinical ManagementClinical PathwaysComputer ModelsComputer Vision SystemsDataData SetDevelopmentDimensionsDiseaseDissectionElasticityElementsEquilibriumEvaluationEvolutionFailureFoundationsGeometryGoalsGrowthImageInjuryInterventionLinkMapsMeasuresMechanicsMedicalMethodsMissionModelingModernizationOperating RoomsOperative Surgical ProceduresOutcomePathway interactionsPatient SelectionPatient imagingPatientsPatternPhysiologicalPrincipal Component AnalysisProbabilityProcessPublic HealthResearchRiskRoleScanningSelection CriteriaShapesStressSurgeonSystemTechniquesTestingTimeUnited States National Institutes of HealthValidationWalkingWorkX-Ray Computed Tomographybasebiomechanical modelblood pressure variabilitycardiovascular healthclinically relevantdensitydifferential geometrygeometric structurehigh riskimprovedindexingindividual patientinnovationmortalitynovelpatient populationpreservationrisk stratificationsimulationsurgical risktool
项目摘要
Project Summary/Abstract:
The natural evolution of aortic dissection is notoriously unpredictable under current methods of evaluation and
management. There is an urgent need to more completely elucidate the biomechanical stability of type B aortic
dissections and identify signatures in the imaging data allowing for optimal patient classification based on aortic
fragility. The long-term goal is the development and validation of image-based analysis algorithms to classify
aortic stability and allow a personalized risk stratification for a given patient’s aortic geometry providing the basis
for optimizing clinical management. The overall objective of this proposal is to utilize modern approaches in
differential geometry, continuum mechanics, and computer vision to discover and characterize high-risk
geometric structures hidden within computed tomography angiography (CTA) data of fragile aortas. The central
hypothesis of this application is the existence of a fundamental link between aortic shape and aortic stability as
it relates to the risk of aortic dissection and fragility. The rationale for this work is development of an easily
translatable geometry and mechanics-based algorithm to predict dissection stability and intervention timing by
discovering a richer and more nuanced mapping of aortic shapes hidden in existing patient imaging data. The
central hypothesis will be tested by pursuing three specific aims: 1) develop a modern geometric classification
for aortic shapes, 2) develop a computational model that provides the mechanism underpinning the shape
evolution of aortic dissections, and 3) develop a modern successor to the traditional ‘maximum diameter’
measure of aortic dissections that integrates geometric, finite element, and physiologic factors. Utilizing a large
pre-identified CTA data set of normal and dissected aortas at various stages of disease and intervention, aim 1
will use tools from computer vision to reduce aortic shape to distributions of shape index and curvedness. Aim 2
will utilize advanced morphoelastic finite element growth models to discover the biomechanical mechanism
underpinning aortic shape changes in aortic dissections and validate these models on patient specific geometries
over clinically relevant time periods. These novel shape and mechanical stability classifiers will be used in both
linear and non-linear dimensionality reduction methods to define aortic shape sub-spaces for different clinical
scenarios in aim 3. This proposal is innovative as it challenges the status quo of evaluation and treatment by
deploying novel measures and techniques that analyze clinically relevant aortic geometry and the evolution of
aortic shape. Every patient is taken to the operating room under the full intent of having a positive clinical
outcome. The research outlined is significant because it is expected to provide surgeons and patients a more
discriminative framework with which to make better informed management decisions concerning type B aortic
dissections and ultimately optimize outcomes.
项目摘要/摘要:
众所周知,在目前的评估和评估方法下,主动脉夹层的自然演变是不可预测的。
迫切需要更全面地阐明 B 型主动脉的生物力学稳定性。
解剖并识别成像数据中的特征,以便根据主动脉进行最佳患者分类
长期目标是开发和验证基于图像的分析算法来进行分类。
主动脉稳定性并允许针对特定患者的主动脉几何形状进行个性化风险分层,从而提供基础
该提案的总体目标是利用现代方法来优化临床管理。
微分几何、连续介质力学和计算机视觉来发现和表征高风险
隐藏在脆弱主动脉的计算机断层扫描血管造影(CTA)数据中的几何结构。
本申请的假设是主动脉形状和主动脉稳定性之间存在基本联系:
它与主动脉夹层和脆性的风险有关。这项工作的基本原理是开发一种简单的方法。
基于可翻译几何和力学的算法来预测解剖稳定性和干预时机
发现隐藏在现有患者成像数据中的更丰富、更细致的主动脉形状映射。
中心假设将通过追求三个具体目标来检验:1)开发现代几何分类
对于主动脉形状,2) 开发一个计算模型,提供支撑该形状的机制
主动脉夹层的演变,3) 开发传统“最大直径”的现代继承者
综合几何、有限元和生理因素的主动脉夹层测量。
预先确定的正常主动脉和解剖主动脉在疾病和干预各个阶段的 CTA 数据集,目标 1
将使用计算机视觉工具将主动脉形状缩小为形状指数和弯曲度的分布,目标 2。
将利用先进的形态弹性有限元生长模型来发现生物力学机制
支持主动脉夹层中主动脉形状的变化,并根据患者特定的几何形状验证这些模型
这些新颖的形状和机械稳定性分类器将在临床相关时间段内使用。
线性和非线性降维方法来定义不同临床的主动脉形状子空间
目标 3 中的情景。该提案具有创新性,因为它挑战了评估和治疗的现状
部署新的措施和技术来分析临床相关的主动脉几何形状和演变
主动脉形状。
概述的研究意义重大,因为它有望为外科医生和患者提供更多信息。
区分性框架,用于针对 B 型主动脉做出更明智的管理决策
解剖并最终优化结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luka Pocivavsek其他文献
Luka Pocivavsek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luka Pocivavsek', 18)}}的其他基金
A Geometric and Morphoelastic Study of Aortic Dissection Evolution
主动脉夹层演化的几何和形态弹性研究
- 批准号:
10280305 - 财政年份:2021
- 资助金额:
$ 57.41万 - 项目类别:
A Geometric and Morphoelastic Study of Aortic Dissection Evolution
主动脉夹层演化的几何和形态弹性研究
- 批准号:
10670102 - 财政年份:2021
- 资助金额:
$ 57.41万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A Geometric and Morphoelastic Study of Aortic Dissection Evolution
主动脉夹层演化的几何和形态弹性研究
- 批准号:
10280305 - 财政年份:2021
- 资助金额:
$ 57.41万 - 项目类别:
OCT and OCTA image processing for retinal assessment of people with MS
用于多发性硬化症患者视网膜评估的 OCT 和 OCTA 图像处理
- 批准号:
10580693 - 财政年份:2021
- 资助金额:
$ 57.41万 - 项目类别:
A Geometric and Morphoelastic Study of Aortic Dissection Evolution
主动脉夹层演化的几何和形态弹性研究
- 批准号:
10670102 - 财政年份:2021
- 资助金额:
$ 57.41万 - 项目类别:
OCT and OCTA image processing for retinal assessment of people with MS
用于多发性硬化症患者视网膜评估的 OCT 和 OCTA 图像处理
- 批准号:
10357873 - 财政年份:2021
- 资助金额:
$ 57.41万 - 项目类别:
Development of a mobile and automated platform for multiplexed multi-modality imaging
开发用于多重多模态成像的移动自动化平台
- 批准号:
9347144 - 财政年份:2015
- 资助金额:
$ 57.41万 - 项目类别: