Topological Energetics and the Cellular Quality Control of Integral Membrane Proteins
完整膜蛋白的拓扑能量学和细胞质量控制
基本信息
- 批准号:10437748
- 负责人:
- 金额:$ 30.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AnabolismBiochemicalBiologicalBiological ModelsBiological ProcessBuffersCellsCollectionComplexComputer AnalysisConflict (Psychology)Data AnalysesDefectDiseaseDrug TargetingEndoplasmic ReticulumEngineeringEnvironmentEquilibriumEvolutionExperimental DesignsG-Protein-Coupled ReceptorsGenetic DiseasesHousekeepingHumanHydrophobicityIn VitroIntegral Membrane ProteinInvestigationLinkLogicMeasurementMediatingMembraneMembrane ProteinsMolecularMolecular ChaperonesMolecular ConformationMonitorMutationNatureOutcomePathogenicityPlayPoint MutationPolar BearProcessProductionPropertyProtein BiosynthesisProtein EngineeringProteinsProteomeQuality ControlResearchRetinitis PigmentosaRhodopsinRoleSeriesShapesSideStructural defectStructureSurveysTestingTransmembrane DomainVariantbasebiochemical toolsbiophysical techniquesbiophysical toolscomputerized toolsfitnessinnovationinsightmisfolded proteinmutation screeningnon-Nativenovelpolypeptideprotein degradationprotein foldingprotein functionprotein structureprotein transportproteostasistooltraffickingtranslation assay
项目摘要
ABSTRACT
Nearly all biological processes require proper production and degradation of cellular proteins. Maintaining this
balance in protein homeostasis (proteostasis) is therefore essential to cellular fitness. Furthermore, a lapse in
cellular proteostasis has been linked to the molecular basis of a wide variety of genetic diseases. Nevertheless,
the manner by which the cell buffers adaptive swings in proteostasis and the impact of mutations on this process
remains poorly understood. This is especially true concerning integral membrane proteins, which account for a
quarter of the human proteome and the majority of current drug targets. Emerging evidence suggests the
production of folded, functional, and properly localized membrane proteins in the cell is typically inefficient and
sensitive to the effects of mutations. The interaction of nascent membrane proteins with molecular chaperones
and other components of the cellular quality control (QC) network seems to play a central role in the efficiency
of membrane protein biosynthesis and trafficking. However, the structural properties of co-translational folding
intermediates as well as the nature of their interactions with molecular chaperones remain poorly understood.
Nevertheless, the formation of these interactions implies that conformational defects are common among
nascent membrane proteins. Based on the physicochemical mechanisms of cotranslational membrane protein
folding, we hypothesize that the formation of non-native topomers during biosynthesis drives the QC-mediated
retention of nascent proteins in the ER. Using the G-protein coupled receptor rhodopsin as a model system, we
have employed a novel protein engineering approach to demonstrate that the activity of cellular QC is sensitive
to the topological energetics. Moreover, we provide preliminary evidence that the pathogenic misfolding of
rhodopsin, which is associated with retinitis pigmentosa, can arise from the stabilization of a non-native topomer.
Using this approach, we will probe the nature of the interface between the topological energy landscape and the
activity of the cellular QC network. To gain insights into the generality of these findings and the evolutionary
trade-offs between folding and function, we will employ a novel adaptation of deep mutational scanning to survey
the proteostatic effects of every possible point mutation in rhodopsin. The results will reveal whether the
conformational equilibria of rhodopsin has evolved to be metastable or to maximize the efficiency of biosynthesis.
Computational analysis of the results will also provide insights into the nature of the structural defects that give
rise to proteostatic perturbations. Finally, we provide preliminary evidence that the constraints of cotranslational
folding impose a contact order bias in the native structural ensembles of integral membrane proteins. To explore
this paradigm, computational analyses of polytopic membrane proteins of known structure in conjunction with
experimental measurements of helical interactions will be employed to determine the extent to which native,
sequence-local contacts influence co-translational folding. Together, these results will provide fundamental
insights into the mechanisms of membrane protein folding in the cell and the molecular basis of disease.
抽象的
几乎所有生物过程都需要细胞蛋白质的适当产生和降解。维持这个
因此,蛋白质稳态(蛋白质稳态)的平衡对于细胞健康至关重要。此外,失误
细胞蛋白质稳态与多种遗传疾病的分子基础有关。尽管如此,
细胞缓冲蛋白质稳态适应性波动的方式以及突变对此过程的影响
仍然知之甚少。对于整合膜蛋白来说尤其如此,它解释了
四分之一的人类蛋白质组和大多数当前药物靶点。新出现的证据表明
细胞中折叠的、有功能的、正确定位的膜蛋白的生产通常效率低下,而且
对突变的影响敏感。新生膜蛋白与分子伴侣的相互作用
和细胞质量控制 (QC) 网络的其他组件似乎在效率方面发挥着核心作用
膜蛋白的生物合成和运输。然而,共平移折叠的结构特性
中间体以及它们与分子伴侣相互作用的性质仍然知之甚少。
然而,这些相互作用的形成意味着构象缺陷在
新生膜蛋白。基于共翻译膜蛋白的理化机制
折叠,我们假设生物合成过程中非天然拓扑异构体的形成驱动了 QC 介导的
新生蛋白质保留在内质网中。使用 G 蛋白偶联受体视紫红质作为模型系统,我们
采用了一种新颖的蛋白质工程方法来证明细胞 QC 的活性是敏感的
到拓扑能量学。此外,我们提供了初步证据表明致病性错误折叠
与色素性视网膜炎相关的视紫红质可以由非天然拓扑异构体的稳定化产生。
使用这种方法,我们将探讨拓扑能量景观和能量场之间界面的本质。
细胞 QC 网络的活动。为了深入了解这些发现的普遍性和进化
折叠和功能之间的权衡,我们将采用深度突变扫描的新颖改编来调查
视紫红质中每种可能的点突变的蛋白质抑制作用。结果将揭示是否
视紫红质的构象平衡已进化为亚稳态或最大化生物合成效率。
对结果的计算分析还将深入了解结构缺陷的性质,从而提供
引起蛋白质稳态扰动。最后,我们提供了初步证据表明共翻译的限制
折叠在完整膜蛋白的天然结构整体中施加了接触顺序偏差。探索
在这种范式中,对已知结构的多面体膜蛋白进行计算分析
将采用螺旋相互作用的实验测量来确定天然的程度,
序列局部接触影响共翻译折叠。总之,这些结果将为
深入了解细胞中膜蛋白折叠的机制和疾病的分子基础。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling membrane geometries implicitly in Rosetta.
在 Rosetta 中隐式模拟膜几何形状。
- DOI:
- 发表时间:2024-03
- 期刊:
- 影响因子:0
- 作者:Woods, Hope;Leman, Julia Koehler;Meiler, Jens
- 通讯作者:Meiler, Jens
Divergent Folding-Mediated Epistasis Among Unstable Membrane Protein Variants.
不稳定膜蛋白变体中不同折叠介导的上位性。
- DOI:
- 发表时间:2024-02-01
- 期刊:
- 影响因子:0
- 作者:Chamness, Laura M;Kuntz, Charles P;McKee, Andrew G;Penn, Wesley D;Hemmerich, Christopher M;Rusch, Douglas B;Woods, Hope;Dyotima;Meiler, Jens;Schlebach, Jonathan P
- 通讯作者:Schlebach, Jonathan P
Towards generalizable predictions for G protein-coupled receptor variant expression.
对 G 蛋白偶联受体变异表达的普遍预测。
- DOI:
- 发表时间:2022-07-19
- 期刊:
- 影响因子:3.4
- 作者:Kuntz, Charles P;Woods, Hope;McKee, Andrew G;Zelt, Nathan B;Mendenhall, Jeffrey L;Meiler, Jens;Schlebach, Jonathan P
- 通讯作者:Schlebach, Jonathan P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Patrick Schlebach其他文献
Jonathan Patrick Schlebach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Patrick Schlebach', 18)}}的其他基金
Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
- 批准号:
10334403 - 财政年份:2021
- 资助金额:
$ 30.43万 - 项目类别:
Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
- 批准号:
10032886 - 财政年份:2021
- 资助金额:
$ 30.43万 - 项目类别:
Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
- 批准号:
10536635 - 财政年份:2021
- 资助金额:
$ 30.43万 - 项目类别:
Topological Energetics and the Cellular Quality Control of Integral Membrane Proteins
完整膜蛋白的拓扑能量学和细胞质量控制
- 批准号:
10220073 - 财政年份:2018
- 资助金额:
$ 30.43万 - 项目类别:
Structural Basis for the Partitioning of C99 into Liquid-Ordered Membrane Domains
C99 划分为液序膜域的结构基础
- 批准号:
8717279 - 财政年份:2014
- 资助金额:
$ 30.43万 - 项目类别:
Structural Basis for the Partitioning of C99 into Liquid-Ordered Membrane Domains
C99 划分为液序膜域的结构基础
- 批准号:
8856220 - 财政年份:2014
- 资助金额:
$ 30.43万 - 项目类别:
相似国自然基金
耦合生物物理与生化地球化学过程的土地覆被变化多尺度气候效应研究
- 批准号:42371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
藻类微生物燃料电池CO2藻菌协同生化转化及阴极原位耦合光催化捕获
- 批准号:52306222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光合共生生物膜生化转化及共水热碳化过程多元多相传递理论及强化方法
- 批准号:52236009
- 批准年份:2022
- 资助金额:269 万元
- 项目类别:重点项目
力信号与生化信号协同调制免疫细胞两个关键界面过程的生物物理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于化学衍生化-亲和吸附-质谱技术研究新生儿缺血缺氧性脑病预后生物标志物
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 30.43万 - 项目类别:
Sestrins-mediated integration of leucine and exercise benefits for mitochondrial homeostasis
Sestrins介导的亮氨酸整合和运动对线粒体稳态的益处
- 批准号:
10734830 - 财政年份:2023
- 资助金额:
$ 30.43万 - 项目类别:
Chemical Biology Approaches to Studying Collagen IV Stability
研究胶原蛋白 IV 稳定性的化学生物学方法
- 批准号:
10723042 - 财政年份:2023
- 资助金额:
$ 30.43万 - 项目类别:
INVESTIGATE SEQUENCE SPECIFICITY IN THE BIOSYNTHESIS AND RECOGNITION OF RNA CHEMICAL MODIFICATIONS
研究 RNA 化学修饰生物合成和识别中的序列特异性
- 批准号:
10714628 - 财政年份:2023
- 资助金额:
$ 30.43万 - 项目类别:
Defining the role of NC1 domain assembly in collagen biosynthesis and collagen associated disorders
定义 NC1 结构域组装在胶原蛋白生物合成和胶原蛋白相关疾病中的作用
- 批准号:
10679523 - 财政年份:2023
- 资助金额:
$ 30.43万 - 项目类别: