Targeted nano-boron based boron neutron capture therapy for glioma treatment
用于神经胶质瘤治疗的靶向纳米硼硼中子捕获疗法
基本信息
- 批准号:10436070
- 负责人:
- 金额:$ 2.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2022-09-20
- 项目状态:已结题
- 来源:
- 关键词:AcidsAnimal ModelAnimalsBindingBiologicalBiological AssayBiological MarkersBiologyBloodBlood - brain barrier anatomyBlood CirculationBoronBoron Neutron Capture TherapyBrainBrain NeoplasmsCell LineCellsChemicalsClinicClinicalClinical ResearchDNA DamageDataDoseDrug KineticsDrug TransportEngineeringExcisionExposure toFlow CytometryFluorescenceFluorescent DyesGenerationsGlioblastomaGliomaGoalsHigh Pressure Liquid ChromatographyHumanImageIn VitroIndocyanine GreenInductively Coupled Plasma Mass SpectrometryLabelLeadLinkMalignant NeoplasmsMethodologyMethodsMicroscopyModelingMusNecrosisNeutronsNewly DiagnosedNormal tissue morphologyNuclearNuclear ReactorsOperative Surgical ProceduresPatientsPennsylvaniaPeptide TransportPeptidesPersonal SatisfactionPharmaceutical PreparationsPharmacodynamicsPropertyQuality of lifeRadiationRadiation therapyReactionResearch PersonnelRhodamineSalineScienceSodiumSourceTailTherapeutic AgentsTimeTissuesToxic effectTreatment outcomeTumor TissueUniversitiesVeinsVertebral columnWorkaggressive therapyalternative treatmentbasebiodegradable polymerblood-brain barrier crossingbrain tissuecancer cellchemotherapyclinical applicationcomparison interventiondesigndosageefficacy studyimaging agentimprovedin vivoirradiationnanonanodrugnanomedicinenanotechnology platformneoplastic cellnext generationnovelside effectsmall moleculesuccesssurvival outcometreatment responsetumoruptake
项目摘要
Project Summary
Gliomas represent one of the most fatal and difficult to treat cancers. Despite the aggressive therapies,
including surgical resection, radiotherapy and chemotherapy the median survival time for patients remains very
poor. Boron neutron capture therapy (BNCT) is a noninvasive therapy for treating locally invasive malignant
tumors such as glioma. BNCT is a robust therapy with clear advantages as it relies on the nuclear capture and
fission reactions. Despite clear advantages, BNCT have not been as effective in the clinic due to inability to
achieve adequate amounts of Boron-10 (an active drug) concentration selectively in the target cancer cells,
which remains an unsolved problem. The studies proposed here are intended to fill a critical void using a
nanomedicine-based approach, which is uniquely poised to offer a solution to this unsolved problem. We have
developed nanodrugs for imaging and treatment of the primary and metastatic brain tumors. Here we propose
a novel nanodrug (Nano-10Boron), based on a natural, nontoxic and biodegradable polymer carrying in excess
of 300 molecules of Boron-10 enriched 4-boronophenylalanine (BPA) to cross blood-brain barrier (BBB) and
actively target and deliver high Bopron-10 concentration to glioma cells for effective BNCT. In Aim 1, we will
establish optimum functionating lead Nano-10Boron. This will be achieved by synthesizing next-generation
Nano-10Borons with varied loading of BPA and a tumor targeting and BBB transport peptide Angiopep-2 (Ap2).
In our preliminary studies, we used 12 Ap2 molecules and 300 BPA molecules covalently attached to PMLA
to form a first-generation Nano-10Boron. Our goal is to prepare a lead Nano-10Boron with maximum allowable
number of BPA molecules to enhance intracellular Boron-10 concentrations to boost the treatment outcome.
Aim 2 will focus on establishing an ideal time window for neutron flux irradiation for greater BNCT effect. PK
of our first-generation Nano-10Boron is about 1.44 h (see preliminary results for details) whereas, PK of free
BPA used in clinical studies ranges in few minutes. Additionally, PMLA based nanodrugs utilizes active
targeting and remains in tumor for relatively longer period, while clearing out from the systemic circulation
providing grater tumor uptake. Studies outlines in this aim will determine the optimum time window when we
have the highest Boron-10 concentrations in tumor vs surrounding healthy brain, facilitating effective BNCT
response while minimizing any potential off targeting toxicity to the healthy brain. Aim 3 will utilize the lead
Nano-10Boron to treat glioma baring mice to improve the survival. Lead Nano-10Boron will be injected at the
optimum dose developed in the previous aim followed by irradiation with low energy neutrons to treat glioma
baring animals and improve the survival time. The proposed work will solve the long-standing problem of
Boron-10 delivery, thereby making BNCT a practical therapy for glioma treatment, improve patient survival and
enhance the quality of life. The results of this study could lay the groundwork for a novel treatment option for
glioma for clinical applications.
Page 1
项目概要
神经胶质瘤是最致命且最难治疗的癌症之一。尽管采取了积极的治疗,
包括手术切除、放疗和化疗,患者的中位生存时间仍然很长
贫穷的。硼中子俘获疗法(BNCT)是一种治疗局部侵袭性恶性肿瘤的无创疗法。
肿瘤,例如神经胶质瘤。 BNCT 是一种强大的疗法,具有明显的优势,因为它依赖于核捕获和
裂变反应。尽管 BNCT 具有明显的优势,但由于无法
在目标癌细胞中选择性地达到足够量的硼 10(一种活性药物)浓度,
这仍然是一个未解决的问题。这里提出的研究旨在利用
基于纳米医学的方法,它独特地准备为这个未解决的问题提供解决方案。我们有
开发了用于原发性和转移性脑肿瘤成像和治疗的纳米药物。在这里我们建议
一种新型纳米药物(Nano-10Boron),基于天然、无毒且可生物降解的聚合物,携带过量
300 个富含硼 10 的分子 4-硼苯丙氨酸 (BPA) 可穿过血脑屏障 (BBB)
积极靶向并向神经胶质瘤细胞输送高浓度的 Bopron-10,以实现有效的 BNCT。在目标 1 中,我们将
建立最佳功能的先导 Nano-10Boron。这将通过合成下一代来实现
Nano-10Borons 具有不同负载的 BPA 和肿瘤靶向和 BBB 转运肽 Angiopep-2 (Ap2)。
在我们的初步研究中,我们使用了 12 个 Ap2 分子和 300 个 BPA 分子共价连接到 PMLA
形成第一代Nano-10Boron。我们的目标是制备具有最大允许值的铅纳米10硼
大量 BPA 分子可增强细胞内硼 10 浓度,从而提高治疗效果。
目标 2 将侧重于建立中子通量辐照的理想时间窗口,以实现更大的 BNCT 效果。 PK
我们的第一代 Nano-10Boron 的 PK 约为 1.44 h(详细信息请参见初步结果),而免费的 PK
临床研究中使用的 BPA 在几分钟内即可变化。此外,基于 PMLA 的纳米药物利用活性
靶向并在肿瘤中停留相对较长的时间,同时从体循环中清除
提供更大的肿瘤摄取。这一目标的研究大纲将确定我们的最佳时间窗口
与周围健康大脑相比,肿瘤中的硼 10 浓度最高,有助于有效的 BNCT
反应,同时最大限度地减少对健康大脑的任何潜在的非靶向毒性。目标 3 将利用领先优势
Nano-10Boron 治疗患有神经胶质瘤的小鼠以提高存活率。铅纳米10硼将被注入
先前目标中开发的最佳剂量,然后用低能中子照射治疗神经胶质瘤
裸露动物并提高生存时间。拟议的工作将解决长期存在的问题
硼 10 输送,从而使 BNCT 成为神经胶质瘤治疗的实用疗法,提高患者生存率并
提高生活质量。这项研究的结果可能为一种新的治疗方案奠定基础
神经胶质瘤的临床应用。
第1页
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rameshwar Tukaram Patil其他文献
Rameshwar Tukaram Patil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rameshwar Tukaram Patil', 18)}}的其他基金
Targeted nano-boron based boron neutron capture therapy for glioma treatment
用于神经胶质瘤治疗的靶向纳米硼硼中子捕获疗法
- 批准号:
10731166 - 财政年份:2023
- 资助金额:
$ 2.87万 - 项目类别:
相似国自然基金
EETs对于早期椎间盘退变中髓核细胞增殖及ECM代谢的作用及其机制的研究
- 批准号:81860398
- 批准年份:2018
- 资助金额:33.0 万元
- 项目类别:地区科学基金项目
A20调控透明质酸激活的耳蜗天然免疫炎症反应的作用和机制
- 批准号:81771006
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
树鼩及其他常见流感动物模型唾液酸转移酶功能差异比较研究
- 批准号:81760379
- 批准年份:2017
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
靶向酸敏感离子通道调控新机制的系统药理学研究
- 批准号:81730095
- 批准年份:2017
- 资助金额:300.0 万元
- 项目类别:重点项目
ApoEnull/Fat-1心衰模型的建立和在研究环状RNA调控n-3 PUFAs保护机制的应用
- 批准号:31672376
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 2.87万 - 项目类别:
Shigella Conjugate Vaccine (SCV4) Development, Characterization, and Pre-clinical Evaluation
志贺氏菌结合疫苗 (SCV4) 的开发、表征和临床前评估
- 批准号:
10704325 - 财政年份:2023
- 资助金额:
$ 2.87万 - 项目类别:
Elucidating the Host Metabolic Response to Consumption of Kombucha-associated Microorganisms
阐明宿主对康普茶相关微生物消耗的代谢反应
- 批准号:
10678132 - 财政年份:2023
- 资助金额:
$ 2.87万 - 项目类别:
Targeting Cholesterol Homeostasis to maintain vision in MS-like optic neuritis
针对多发性硬化症样视神经炎的胆固醇稳态以维持视力
- 批准号:
10657163 - 财政年份:2023
- 资助金额:
$ 2.87万 - 项目类别:
Age Differences and Mechanisms of Ketogenic Diet Induced Bone Loss
生酮饮食导致骨质流失的年龄差异和机制
- 批准号:
10740305 - 财政年份:2023
- 资助金额:
$ 2.87万 - 项目类别: