Self-regulation of Lipases by Changes to Quaternary Structure
通过四级结构的变化进行脂肪酶的自我调节
基本信息
- 批准号:10429286
- 负责人:
- 金额:$ 9.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acinar CellAddressAdipocytesAdoptedAffectAmylasesAntibodiesBindingBloodBlood capillariesCell DeathCell LineCellsCentrifugationChylomicronsCryo-electron tomographyCryoelectron MicroscopyCuesCytoplasmic GranulesDataDevelopmentDiagnosticDiseaseEnzyme PrecursorsEnzymesEquilibriumFeedbackFilamentFoundationsFreezingGastrointestinal tract structureHealthHeparan Sulfate ProteoglycanHeparin BindingHuman bodyImmunofluorescence MicroscopyIn SituIn VitroInflammationInformal Social ControlLeadLearningLifeLightLipaseLipidsLipoprotein (a)Mass Spectrum AnalysisMetabolicMetabolic syndromeMetabolismMicroscopyMolecular ConformationMonitorNegative StainingNutritionalPainPancreasPancreatic enzymePancreatitisPhasePhenotypePhospholipasePhospholipidsPlayProteinsRegulationResearchResearch PersonnelRoleRouteSecretory VesiclesSignal TransductionSmall IntestinesSolidStructureTechniquesTomogramTrainingTriglyceridesVery low density lipoproteinVesicleWestern BlottingWorkYeastsacute pancreatitisbaseenzyme activityin vivoinnovationknock-downlipoprotein lipasemonomernanobodiesnovelnovel therapeuticspancreatic cell linepreventskillsspatiotemporalsuccesstrafficking
项目摘要
Abstract
Lipases are a key regulator of metabolic equilibrium in the human body. Examples of conditions in which lipases
are dysregulated include pancreatitis, metabolic syndrome, and lipid storages diseases. One of the hallmarks of
pancreatitis is the secretion of digestive enzymes, such as pancreatic triacylglycerol lipase (PTL), into the
capillaries, rather than the digestive tract, which damages pancreatic cells. Thus, there is a clear need for precise
spatiotemporal regulation of lipase activity in the body. In recent work, we found that lipoprotein lipase (LPL)
adopts an inactive helical oligomer for storage in adipocyte vesicles prior to secretion. Lipases, like LPL, have a
special need for mechanisms of self-regulation, as many possess phospholipase activity, making it difficult to
store them in phospholipid-based vesicles. It is likely that other lipases beyond LPL self-regulate by quaternary
structure formation to protect the delicate balance of metabolism in the body.
In Aim 1, I will elucidate the in situ structure of inactive oligomers of LPL. I will train to use cryo-electron
tomography (cryoET) to study LPL structure inside of vesicles. I will also develop a conformation-specific
nanobody to discriminate between helical LPL and monomer LPL for use with immunofluorescence microscopy.
I will launch my independent R00 research phase by investigating PTL in Aim 2. Preliminary data suggests that
PTL forms filaments inside of vesicles and I will screen PTL in vitro for the ability to form inactive self-regulated
oligomers and solve their structure using cryo-electron microscopy (cryoEM). I will then apply the pipeline of
cryoET and nanobodies developed for studying LPL in vivo, to look at PTL. Finally in Aim 3, I will use pancreatic
acinar cells to examine the secretome of the pancreas with and without an acute pancreatitis phenotype. I will
look specifically for enzymes stored in inactive quaternary structures and characterize the role played by
heparan-sulfate proteoglycans (HSPGs) in secretion. HSPGs have been shown to stabilize LPL filaments and
are top candidates for targeting self-regulated filaments into secretory granules. This research will provide crucial
information about the structure of lipases in vesicles during cellular trafficking and identify innovative ways to
address dysregulation of enzyme secretion associated with pancreatitis.
The skills I acquire using cryoET, developing nanobodies, performing immunofluorescence microscopy, and
learning about the pancreas will be essential for setting up my success as an independent researcher. They will
allow me to pursue pioneering studies of in situ lipase quaternary structure and uncover mechanisms to prevent
dysregulation of enzyme secretion during pancreatitis.
抽象的
脂肪酶是人体内代谢平衡的关键调节剂。脂肪酶发挥作用的条件示例
失调的疾病包括胰腺炎、代谢综合征和脂质沉积病。的标志之一
胰腺炎是消化酶(例如胰腺三酰甘油脂肪酶(PTL))分泌到胰腺中
毛细血管,而不是消化道,会损害胰腺细胞。因此,显然需要精确的
体内脂肪酶活性的时空调节。在最近的工作中,我们发现脂蛋白脂肪酶(LPL)
采用非活性螺旋寡聚物在分泌前储存在脂肪细胞囊泡中。脂肪酶,如 LPL,具有
特别需要自我调节机制,因为许多具有磷脂酶活性,因此很难
将它们储存在基于磷脂的囊泡中。 LPL 之外的其他脂肪酶很可能通过季铵盐进行自我调节
结构形成,保护体内新陈代谢的微妙平衡。
在目标 1 中,我将阐明 LPL 无活性低聚物的原位结构。我将训练使用冷冻电子
断层扫描 (cryoET) 用于研究囊泡内部的 LPL 结构。我还将开发一种特定构象的
纳米抗体可区分螺旋 LPL 和单体 LPL,用于免疫荧光显微镜。
我将通过调查目标 2 中的 PTL 来启动我的独立 R00 研究阶段。初步数据表明
PTL 在囊泡内部形成细丝,我将在体外筛选 PTL 形成非活性自我调节的能力
低聚物并使用冷冻电子显微镜 (cryoEM) 解析其结构。然后我将应用管道
开发冷冻ET和纳米抗体是为了研究体内LPL,以观察PTL。最后在目标 3 中,我将使用胰脏
腺泡细胞来检查有或没有急性胰腺炎表型的胰腺分泌组。我会
专门寻找储存在非活性四级结构中的酶,并表征其所起的作用
分泌中的硫酸乙酰肝素蛋白多糖(HSPG)。 HSPG 已被证明可以稳定 LPL 细丝并
是将自我调节细丝靶向分泌颗粒的最佳候选者。这项研究将提供至关重要的
有关细胞运输过程中囊泡中脂肪酶结构的信息,并确定创新方法
解决与胰腺炎相关的酶分泌失调。
我使用 CryoET 获得的技能、开发纳米抗体、进行免疫荧光显微镜检查以及
了解胰腺对于我作为一名独立研究者的成功至关重要。他们会
请允许我对原位脂肪酶四级结构进行开创性研究,并揭示防止其发生的机制
胰腺炎期间酶分泌失调。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathryn Harris Gunn其他文献
Kathryn Harris Gunn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathryn Harris Gunn', 18)}}的其他基金
Self-regulation of Lipases by Changes to Quaternary Structure
通过四级结构的变化进行脂肪酶的自我调节
- 批准号:
10703368 - 财政年份:2022
- 资助金额:
$ 9.78万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Them1 Inhibitors for the Management of Non-Alcoholic Fatty Liver Disease
Them1 治疗非酒精性脂肪肝的抑制剂
- 批准号:
10666090 - 财政年份:2023
- 资助金额:
$ 9.78万 - 项目类别:
PDGFRB Signaling in Progressive Skin Disease
进行性皮肤病中的 PDGFRB 信号传导
- 批准号:
10583948 - 财政年份:2023
- 资助金额:
$ 9.78万 - 项目类别:
Defining the role of Wnt11 and Wnt5a in regulating hematopoietic and skeletal stem cell self-renewal potential during homeostasis and stress
定义 Wnt11 和 Wnt5a 在稳态和应激过程中调节造血和骨骼干细胞自我更新潜力的作用
- 批准号:
10731650 - 财政年份:2023
- 资助金额:
$ 9.78万 - 项目类别:
Mechanical properties of adipose tissue and its effect on breast cancer
脂肪组织的力学特性及其对乳腺癌的影响
- 批准号:
10737165 - 财政年份:2023
- 资助金额:
$ 9.78万 - 项目类别:
Identifying the long-term metabolic complications of in-utero and lactational antiretroviral exposure
确定子宫内和哺乳期抗逆转录病毒暴露的长期代谢并发症
- 批准号:
10762179 - 财政年份:2023
- 资助金额:
$ 9.78万 - 项目类别: