Immunoevasive Engineered Living Blood Vessels
免疫逃避工程活血管
基本信息
- 批准号:10420546
- 负责人:
- 金额:$ 61.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AllogenicAneurysmArteriesBiochemicalBiologicalBiomechanicsBlood VesselsCD47 geneCell WallCellsChemicalsCollagenCollagen FiberCollagen FibrilElastinElementsEndothelial CellsEngineeringExtracellular MatrixFailureHLA G antigenHLA-A geneHomingHumanImmune systemImmunoassayImmunologicsImplantIn VitroInfiltrationMechanicsMicrofabricationMorphologyMusNatural Killer CellsOperative Surgical ProceduresPatientsPhasePhenotypePhysiologicalProcessProductionPropertyProteinsProtocols documentationRattusReportingResearch PersonnelRiskSmooth Muscle MyocytesSourceStenosisStructureT-LymphocyteTechniquesThickTissue EngineeringVascular Smooth Musclebiodegradable polymerdesigndifferentiation protocolgenome editinghuman pluripotent stem cellhydrodynamic flowimmunogenicityimmunoregulationimplantationin vivoinnovationlarge scale productionmacrophagematerials scienceprogrammed cell death ligand 1protein expressionreconstitutionresponsescaffoldstem cell biologystem cellstoolvascular tissue engineering
项目摘要
Project Summary
Recent innovations by project investigators have established an important new framework for the rapid
and scalable production of engineered living blood vessels. Notably, we have designed new protocols for
multiplex genome editing to generate human pluripotent stem cells (hPSCs) in which HLA-A, -B, and -C were
selectively ablated, HLA class II molecules eliminated, and multiple tolerogenic factors, including HLA-G, PD-L1,
and CD47 expressed. Vascular smooth muscle cells (SMCs) and endothelial cells (ECs) derived from these
PSCs, using our previously reported chemically defined differentiation protocols, were protected from
alloimmune rejection in vitro and in vivo. Further, we have developed new engineering approaches for the
fabrication of mechanically robust, free-standing, ultrathin collagen sheets and related manufacturing tools for
the scalable production of engineered living blood vessels. In this proposal, we postulate that immunoevasive
blood vessels can be efficiently and rapidly manufactured using ‘hypoimmunogenic’ cells and planar extracellular
matrix (ECM) scaffolds of defined composition, content, and microarchitecture. In the process, the efficacy of a
variety of tolerogenic strategies will be evaluated. In this proposal we intend to:
(1) Define the morphological and structural remodeling responses of an engineered living blood vessel
substitute designed to mimic the microstructure of the native vessel wall. Engineered vessels will be
fabricated by seeding primary human vascular wall cells on ultrathin ECM sheets consisting of collagen fibers or
a collagen-elastin multilamellar composite. Biomechanical properties will be tuned in response to microstructure,
and both biochemical and functional responses defined under simulated physiological conditions. Vessels will be
implanted into immunodeficient SRG rats and both phenotypic stability and remodeling responses defined.
(2) Generate ‘hypoimmunogenic’ vascular smooth muscle cells and endothelial cells that evade
immunological rejection. ECs and SMCs will be derived from hypoimmunogenic hPSCs generated by
multiplex genome editing and biological properties determined, including differentiation efficiency, functionality,
absence of HLA proteins, and expression of tolerogenic factors. Angiogenic potential and vessel network
formation will be assessed in vitro and in vivo. Alloreactivity will be evaluated using an in vitro panel of T cell, NK
cell, and macrophage immunoassays, as well as in mice containing human immune system components.
(3) Characterize the phenotypic stability, immunogenicity, and remodeling responses of immunoevasive
engineered living blood vessels. Engineered vessels comprised of hypoimmunogenic cells will be produced
and related biomechanical and biochemical properties characterized. We will determine the capacity of these
vessels to maintain phenotypic stability after in vivo implantation in immunodeficient SRG rats. In the final phase
of these studies, we will determine the ability of vessels engineered from hypoimmunogenic SMCs and ECs to
evade immunological rejection in SRG rats reconstituted with elements of a human immune system.
项目概要
项目研究人员最近的创新为快速研究建立了一个重要的新框架
值得注意的是,我们设计了新的方案。
多重基因组编辑生成人类多能干细胞 (hPSC),其中 HLA-A、-B 和 -C
选择性消融、HLA II 类分子消除以及多种耐受因子,包括 HLA-G、PD-L1、
和 CD47 表达于这些细胞中。
PSCs,使用我们之前报道的化学定义的分化方案,受到保护
此外,我们还开发了新的工程方法。
制造机械坚固、独立式、超薄胶原蛋白片和相关制造工具
在这项提案中,我们假设免疫逃避。
使用“低免疫原性”细胞和平面细胞外可以有效、快速地制造血管
具有明确成分、内容和微结构的基质(ECM)支架在此过程中具有功效。
在本提案中,我们打算:
(1) 定义工程活血管的形态和结构重塑反应
旨在模仿天然血管壁微观结构的替代品将是。
通过将原代人血管壁细胞接种在由胶原纤维或组成的超薄 ECM 片上制成
胶原蛋白-弹性蛋白多层复合材料的生物力学特性将根据微观结构进行调整,
以及在模拟生理条件下定义的生化和功能反应。
植入免疫缺陷 SRG 大鼠并确定表型稳定性和重塑反应。
(2) 产生“低免疫原性”的血管平滑肌细胞和内皮细胞来逃避
EC 和 SMC 来源于免疫原性低的 hPSC。
确定多重基因组编辑和生物学特性,包括分化效率、功能、
缺乏 HLA 蛋白以及血管生成潜力和血管网络的表达。
将在体外评估形成,并使用体外 T 细胞、NK 组评估同种异体反应性。
细胞和巨噬细胞免疫测定,以及含有人类免疫系统成分的小鼠。
(3) 表征免疫逃避的表型稳定性、免疫原性和重塑反应
将产生由低免疫原性细胞组成的工程血管。
我们将确定这些特征的相关生物力学和生化特性。
在免疫缺陷 SRG 大鼠体内植入后,血管维持表型稳定性。
在这些研究中,我们将确定由低免疫原性 SMC 和 EC 改造而成的血管的能力
用人类免疫系统的成分重建的 SRG 大鼠可避免免疫排斥。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elliot Chaikof其他文献
Elliot Chaikof的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elliot Chaikof', 18)}}的其他基金
Sulfated Poly-Amido-Saccharide (sulPAS) Biomaterials as Anticoagulants
作为抗凝剂的硫酸化聚酰胺糖 (sulPAS) 生物材料
- 批准号:
10649522 - 财政年份:2022
- 资助金额:
$ 61.18万 - 项目类别:
Structure-Guided Design of Intestine-Selective AHR Agonists for Restoration of Gut Barrier Integrity in IBD
用于恢复 IBD 肠道屏障完整性的肠道选择性 AHR 激动剂的结构引导设计
- 批准号:
10420534 - 财政年份:2022
- 资助金额:
$ 61.18万 - 项目类别:
Structure-Guided Design of Intestine-Selective AHR Agonists for Restoration of Gut Barrier Integrity in IBD
用于恢复 IBD 肠道屏障完整性的肠道选择性 AHR 激动剂的结构引导设计
- 批准号:
10627922 - 财政年份:2022
- 资助金额:
$ 61.18万 - 项目类别:
Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
- 批准号:
10664097 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
- 批准号:
10222522 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
9795082 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
10474980 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
- 批准号:
9805901 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
10229398 - 财政年份:2019
- 资助金额:
$ 61.18万 - 项目类别:
相似国自然基金
流体剪切力在胸主动脉瘤向胸主动脉夹层演变中的作用及机制研究
- 批准号:12372315
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
腹主动脉瘤患者肠道噬菌体组异常及其病因学作用和机制的研究
- 批准号:82370481
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
核因子КB受体活化因子配体在腹主动脉瘤形成中的作用及机制研究
- 批准号:82370486
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
巨噬细胞参与腹主动脉瘤发生的关键基因鉴定及Trem2在腹主动脉瘤中的作用研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
基于CTA血流动力学组学智能评估颅内小动脉瘤稳定性的研究
- 批准号:82302300
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目