Sensing active movement of the self: reconsidering the cellular basis kinesthesia
感知自我的主动运动:重新考虑细胞基础运动感觉
基本信息
- 批准号:10417741
- 负责人:
- 金额:$ 61.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-06 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAmputationAmputeesAreaBionicsBrainCalciumCaliberCharacteristicsClassificationClinicalCodeComplexDiseaseElectrophysiology (science)EnvironmentEsthesiaEvaluationExhibitsFeedbackFocal DystoniasFoundationsFrequenciesGeneticGlareGolgi Tendon OrgansHistologicHumanImageImmunologicsIndividualInfrastructureInteroceptionInterventionIntramuscularKinesthesisKinesthetic IllusionsKnowledgeLearningLinkLiquid substanceMediatingModelingMolecular GeneticsMorphologyMotorMovementMusMuscleMuscle ContractionMuscle FibersMuscle SpindlesNatureNeuronsOutcomeParkinson DiseasePerceptionPeripheralPeripheral Nervous System DiseasesPlayPopulationPropertyProprioceptorProsthesisPublishingRattusReflex actionRoleSensorySensory ReceptorsSkeletal MuscleStimulusStrokeSystemTestingTranslatingTranslational ResearchTranslationsUnited States National Institutes of HealthWorkbaseclinical applicationclinical carecortex mappingdesignfrontierimprovedlimb movementmotor controlmotor deficitmusculoskeletal injuryneural circuitnovelpreservationpreventreceptorrelating to nervous systemresponserestorationsensorsensory stimulusstroke modelstroke patientsuccesstheoriestooltranscriptometranslational medicinevibration
项目摘要
Abstract
The sense of movement (kinesthesia) provides an interoceptive internal readout of our physical actions in space
and is essential for our ability to move fluidly and effectively through our environment. Despite kinesthesia's
importance in motor function and self-reference, our understanding of this sense is plagued by glaring knowledge
gaps and inconsistencies. Movement sensations are traditionally believed to be a specialized function of type Ia
muscle spindle afferents. Yet, the apparent disconnect between the peripheral coding properties of this receptor
and the sensory stimuli known to evoke a sense of movement have raised questions regarding their primary role
in kinesthesia. Although proprioceptive interventions provide functional motor improvements for many conditions
such as stroke, Parkinson's disease, focal dystonia, peripheral neuropathies, and musculoskeletal injuries, the
lack of a clear scientific foundation for kinesthesia impacts our understanding of sensory-motor deficits and
prevents important breakthroughs from translating into clinical successes and targeted intervention strategies.
From our recent work we have multiple lines of evidence that suggest there may be sensory muscle receptors,
outside of the traditional muscle spindles and Golgi tendon organs that exhibit features consistent with a
kinesthetic sensor. First, our peripheral electrophysiological recordings in rat demonstrate a population of fast-
conducting rapidly-adapting afferents, that are distinct from muscle spindle and Golgi tendon organ afferents,
yet are selectively activated in the frequency bandwidth associated with kinesthetic illusions. Second, our
immunological analyses in mouse skeletal muscle reveal a new population of large caliber Calbindin28k+
afferents that do not associate with muscle spindle or Golgi tendon organ receptors but instead terminate in free
endings that spread out alongside extrafusal muscle fibers. In a movement-perception study with human neural-
machine interface amputees, we found that vibration-induce illusory kinesthetic percepts were linked to muscle
contraction not elongation. These results were corroborated in a human stroke model where we amplified
kinesthetic perception linked to active muscle contraction which resulted in improved reaching trajectories. With
these observations we hypothesize that there are candidate muscle sensory afferents, distinct from type Ia
afferents, which selectively respond to muscle fiber contraction.
The studies in this proposal will explore the relationships between the response properties and physical
characteristics of these candidate kinesthetic receptors and the traditionally defined muscle sensory receptors
using genetic, histological, and electrophysiological approaches. Additionally, we will examine this systems
functionality with respect to contractile features and its ability to serve as a stimulus for active movement sensing.
The discovery and evaluation of the cellular basis of kinesthesia will fundamentally transform our understanding
of sensory-motor control and, by extension, will impact design strategies for advanced neural-machine interface
prosthetic devices for amputees, as well as other disorders with sensory-motor deficiencies such as stroke.
抽象的
运动感(动觉)提供了我们在空间中的身体动作的内感受内部读数
对于我们在环境中流畅有效地移动的能力至关重要。尽管有动觉
运动功能和自我参照的重要性,我们对这种感觉的理解受到明显知识的困扰
差距和不一致。传统上认为运动感觉是 Ia 型的特殊功能
肌梭传入。然而,该受体的外周编码特性之间存在明显的脱节
已知能唤起运动感的感官刺激引发了对其主要作用的质疑
在动觉中。尽管本体感觉干预可以在许多情况下改善功能性运动
例如中风、帕金森病、局灶性肌张力障碍、周围神经病和肌肉骨骼损伤,
缺乏明确的动觉科学基础影响了我们对感觉运动缺陷的理解
阻碍重要突破转化为临床成功和有针对性的干预策略。
从我们最近的工作中,我们有多种证据表明可能存在感觉肌肉受体,
在传统的肌梭和高尔基腱器官之外,它们表现出与
动觉传感器。首先,我们对大鼠的外周电生理记录表明,有一群快速
传导快速适应的传入,与肌梭和高尔基腱器官传入不同,
然而在与动觉错觉相关的频率带宽中被选择性地激活。第二,我们的
小鼠骨骼肌免疫学分析揭示了大口径 Calbindin28k+ 的新群体
传入神经不与肌梭或高尔基腱器官受体相关,而是以自由终止
末端沿着梭外肌纤维展开。在一项针对人类神经的运动感知研究中
对于机器界面截肢者,我们发现振动引起的虚幻动觉知觉与肌肉有关
是收缩不是伸长。这些结果在人类中风模型中得到了证实,我们在该模型中放大了
动觉知觉与主动肌肉收缩相关,从而改善到达轨迹。和
根据这些观察结果,我们假设存在与 Ia 型不同的候选肌肉感觉传入
传入神经,选择性地响应肌纤维收缩。
本提案中的研究将探讨响应特性与物理之间的关系
这些候选动觉受体和传统定义的肌肉感觉受体的特征
使用遗传、组织学和电生理学方法。此外,我们将检查该系统
收缩特征的功能及其作为主动运动传感刺激的能力。
动觉细胞基础的发现和评估将从根本上改变我们的理解
感觉运动控制,进而影响先进神经机器接口的设计策略
截肢者的假肢装置,以及其他伴有感觉运动缺陷的疾病(如中风)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul D. Marasco其他文献
Paul D. Marasco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul D. Marasco', 18)}}的其他基金
Ethical Considerations in Animal Study Translation
动物研究翻译中的伦理考虑
- 批准号:
10790093 - 财政年份:2022
- 资助金额:
$ 61.42万 - 项目类别:
Sensing active movement of the self: reconsidering the cellular basis kinesthesia
感知自我的主动运动:重新考虑细胞基础运动感觉
- 批准号:
10618908 - 财政年份:2022
- 资助金额:
$ 61.42万 - 项目类别:
Advanced Materials to Improve Moisture Management for Prosthetic Socket Liners
先进材料可改善假肢接受腔衬垫的水分管理
- 批准号:
9192453 - 财政年份:2017
- 资助金额:
$ 61.42万 - 项目类别:
Restoring Upper Limb Movement Sense to Amputees; a Move Towards Natural Control o
恢复截肢者上肢运动感觉;
- 批准号:
8775031 - 财政年份:2013
- 资助金额:
$ 61.42万 - 项目类别:
Restoring upper limb movement sense to amputees; a move towards natural control o
使截肢者恢复上肢运动感觉;
- 批准号:
8412370 - 财政年份:2012
- 资助金额:
$ 61.42万 - 项目类别:
相似国自然基金
PGE2通过EP受体调控CCL2/CCR2信号通路轴介导截肢后爆发痛的外周机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
躯体感觉皮层神经元-小胶质细胞交互作用调控截肢后继发性疼痛的神经机制
- 批准号:82171218
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
下肢截肢后外周血管阻抗改变影响心血管系统的血流动力学研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
面向膝上截肢者融合智能下肢假肢的新型外骨骼机器人关键技术研究
- 批准号:61803272
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
利用靶向神经移植术重建缺失肢体运动神经信息源及机制研究
- 批准号:81760416
- 批准年份:2017
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Bone Regeneration in a Mouse Model of Masquelet's Induced Membrane Technique
Masquelet 诱导膜技术小鼠模型的骨再生
- 批准号:
10426512 - 财政年份:2022
- 资助金额:
$ 61.42万 - 项目类别:
Regenerative Micro-Electrode Peripheral Nerve Interface for Optimized Proprioceptive and Cutaneous specific interfacing
再生微电极周围神经接口,用于优化本体感觉和皮肤特定接口
- 批准号:
10531069 - 财政年份:2022
- 资助金额:
$ 61.42万 - 项目类别:
Mechanisms of Skeletal Morphogenesis During Digit Tip Regeneration
指尖再生过程中骨骼形态发生的机制
- 批准号:
10371285 - 财政年份:2022
- 资助金额:
$ 61.42万 - 项目类别:
Regenerative Micro-Electrode Peripheral Nerve Interface for Optimized Proprioceptive and Cutaneous specific interfacing
再生微电极周围神经接口,用于优化本体感觉和皮肤特定接口
- 批准号:
10685499 - 财政年份:2022
- 资助金额:
$ 61.42万 - 项目类别:
Mechanisms of Skeletal Morphogenesis During Digit Tip Regeneration
指尖再生过程中骨骼形态发生的机制
- 批准号:
10655300 - 财政年份:2022
- 资助金额:
$ 61.42万 - 项目类别: