Ultrasound image-guided treatment of ischemia-reperfusion injury using argon microbubbles
超声图像引导氩气微泡治疗缺血再灌注损伤
基本信息
- 批准号:10415201
- 负责人:
- 金额:$ 8.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:1-Phosphatidylinositol 3-Kinase3-DimensionalAcousticsAcuteAnimal ModelAnimalsApplications GrantsArgonBiological AssayBiological MarkersBlood CirculationCASP3 geneCardiacCaspaseCell Culture TechniquesCell LineCell SurvivalCell membraneCellsCentrifugationClinicClinicalCollaborationsColloidsCytoprotective AgentDevelopmentEncapsulatedEngineeringEnsureEnvironmentExhibitsExposure toFormulationFutureGasesGlucoseGlutamate ReceptorGoalsHealthHeart ArrestHeart InjuriesHypoxiaIn VitroIncentivesInhalationInjuryKidneyLengthLipidsLiposomesLiteratureMeasuresMediatingMethodsMicrobubblesMicrofluidicsModelingMyocardial InfarctionNeuronal InjuryNeuronsNitric OxideNoble GasesOxidative StressOxygenPathway interactionsPediatric HospitalsPerfusionPhiladelphiaPhospholipidsPhysiologicalPreclinical TestingPreparationProductionPropertyProto-Oncogene Proteins c-aktProtocols documentationReperfusion InjuryReperfusion TherapyReportingResearchRestSignal PathwaySignal TransductionSiteSolubilitySonicationStrokeSystemTestingTherapeuticTherapeutic EffectTimeTissuesTranslatingTranslationsTraumatic Brain InjuryUltrasonographyUp-RegulationValidationWorkXenonaqueousbaseclinical applicationdeprivationdesigndisabilityearly phase clinical trialefficacy evaluationefficacy testingexperiencehypoxic ischemic injuryimage guidedimage guided therapyimprovedin vivoin vivo imaginginterfacialischemic injurymouse modelnon-invasive imagingpreventscale upside effectsimulationtheranosticstreatment effectultrasoundvalidation studies
项目摘要
The key health significance of this proposal involves the ultrasound-mediated, image-guided, localized treatment
of ischemia reperfusion injury (IRI) in neuronal and cardiac models using echogenic argon microbubbles
(ArMBs). There exist no clinically approved methods for treating damaged tissue after experiencing hypoxic
ischemic and reperfusion injuries such as stroke or cardiac arrest. Noble gases like argon (Ar) and xenon (Xe)
are highly promising cytoprotective agents that have been shown to successfully treat acute IRI in vitro and in
animal models. Whereas Xe has been researched in greater detail including in early clinical trials, it can be
prohibitively expensive and difficult to obtain. Ar is a hundred times cheaper and widely available, while exhibiting
excellent organoprotective efficiency. Furthermore, the mechanism of Xe action depends on its interaction with
glutamate receptors on cell membranes, whereas Ar is reported to work by stimulating various endogenous
cellular protecting signaling pathways, making it a more versatile antiapoptotic agent. Current Ar therapy is long
and systemic, via inhalation, making it non-specific to the injury site, likely diminishing therapeutic effect. As a
solution, we propose the development of MBs (MBs) for localized delivery of the therapeutic gas. MBs are
inherently echogenic due to their non-linear oscillations induced by clinical ultrasound. Therapeutic gases such
as Ar, however, are difficult to stabilize inside bubbles due to the former's high aqueous solubility. The team has
recently succeeded in small-scale production of stable, echogenic, noble gas MBs through optimization of the
MB shell composition, leading to a productive, ongoing collaboration with clinicians at the Children's Hospital of
Philadelphia (CHOP). The proposed research will be conducted through the implementation of three specific
aims. (1) 1-10 µm ArMBs will be formulated at a high yield of >1010 MBs per mL. Ultrasound signal of optimized
ArMBs will be investigated in flow phantoms and in a mouse model by measuring the magnitude, perfusion, and
persistence of contrast. (2) The therapeutic effect of ultrasound mediated Ar release from bubbles in treating IRI
will be estimated in in vitro cell culture-based simulations of neuronal and cardiac injuries induced by oxygen
glucose deprivation. The validity of ArMBs will be proved by enhanced cell viability, decrease in caspase
activation, and upregulation in the phosphatidylinositol 3 kinase (PI3K-AKT) pathway. (3) Further incentive to
use ArMBs will be recognized by comparing their IRI treatment results to that of bulk Ar exposure to cells and
exposure to XeMBs. ArMB activity even with the deactivation of glutamate receptors will be shown to cement
the feasibility of ArMBs for a variety of cytoprotective treatments. The PI team will leverage their expertise in
colloidal design, cellular dynamics, and ultrasound imaging to precisely engineer the ArMB shell and to rigorously
establish the validity of this new, inexpensive agent in vitro for the team's long-term goal of testing ArMBs for
non-invasive, image guided treatment of IRI in large animal models and translating them to clinical settings.
该提案的关键健康意义涉及超声介导、图像引导、局部治疗
使用回声氩微泡对神经元和心脏模型中的缺血再灌注损伤 (IRI) 进行研究
(ArMB)尚无临床批准的治疗缺氧后受损组织的方法。
缺血性和再灌注损伤,例如中风或心脏骤停 惰性气体,如氩 (Ar) 和氙 (Xe)。
是非常有前途的细胞保护剂,已被证明可以在体外和体内成功治疗急性 IRI
然而,Xe 已经得到了更详细的研究,包括在早期临床试验中,它可以
Ar 的价格昂贵且难以获得,但价格却便宜一百倍,而且在展出的同时也很容易获得。
优异的有机保护效率此外,Xe 的作用机制取决于其与
据报道,Ar 通过刺激细胞膜上的谷氨酸受体来发挥作用
细胞保护信号通路,使其成为更通用的抗凋亡剂。目前的Ar治疗时间较长。
和全身性的,通过吸入,使其对损伤部位不具有特异性,可能会降低治疗效果。
解决方案,我们建议开发用于治疗气体局部输送的MB(MB)。
由于临床超声等治疗气体引起的非线性振荡,因此具有固有的回声。
然而,由于Ar的水溶性较高,很难在气泡内稳定。
最近通过优化,成功地小规模生产了稳定、回声、惰性气体MB
MB 外壳组合物,导致与儿童医院的新人进行富有成效的、持续的合作
费城(CHOP)。拟议的研究将通过实施三个具体项目来进行。
目标 (1) 1-10 µm ArMB 将以每毫升 >1010 MB 的高产量配制。
ArMB 将在流动模型和小鼠模型中通过测量强度、灌注和
(2)超声介导的气泡释放Ar治疗IRI的疗效。
将在基于体外细胞培养的氧诱导神经元和心脏损伤模拟中进行估计
葡萄糖剥夺的有效性将通过细胞活力的增强、半胱天冬酶的减少来证明。
磷脂酰肌醇 3 激酶 (PI3K-AKT) 通路的激活和上调 (3) 进一步激励。
使用 ArMB 将通过将 IRI 处理结果与细胞大量 Ar 暴露的结果进行比较来识别
即使谷氨酸受体失活,暴露于 XeMB 也会发挥作用。
ArMB 用于各种细胞保护治疗的可行性 PI 团队将利用他们在这方面的专业知识。
胶体设计、细胞动力学和超声成像精确设计 ArMB 外壳并严格
确定这种新型廉价药物在体外的有效性,以实现团队测试 ArMB 的长期目标
在大型动物模型中进行非侵入性、图像引导的 IRI 治疗,并将其转化为临床环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daeyeon Lee其他文献
Daeyeon Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daeyeon Lee', 18)}}的其他基金
Ultrasound image-guided treatment of ischemia-reperfusion injury using argon microbubbles
超声图像引导氩气微泡治疗缺血再灌注损伤
- 批准号:
10303690 - 财政年份:2021
- 资助金额:
$ 8.13万 - 项目类别:
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
Ti3C2Tx诱导锌金属负极表面三维重构及锌沉积调控新机制研究
- 批准号:52372236
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
本征二维磁性材料CrI3的缺陷原子结构与磁性关联研究
- 批准号:12304019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
- 批准号:52361040
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
- 批准号:
10761587 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Eye as a Window into Brain Health in Pediatric Hydrocephalus
眼睛是了解小儿脑积水大脑健康的窗口
- 批准号:
10659299 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别: