Molecular and cellular imaging of bone biopsies using AI augmented deep UV Raman microscopy
使用 AI 增强深紫外拉曼显微镜对骨活检进行分子和细胞成像
基本信息
- 批准号:10413606
- 负责人:
- 金额:$ 21.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ModelBinding ProteinsBiologicalBiological AssayBiopsyBone TissueBone neoplasmsBreast Cancer cell lineCancer BiologyCancer DetectionCancer DiagnosticsChemicalsClinicalComputer softwareDataData AnalysesDetectionDevelopmentEarly DiagnosisEnsureFrequenciesGoalsImageImage AnalysisIndividualKnowledgeLabelLegal patentLesionLibrariesMachine LearningMalignant NeoplasmsMetastatic Neoplasm to the BoneMethodsMicroscopeMicroscopicMicroscopyMolecularMolecular StructureOpticsPathologyPathway interactionsPerformancePharmaceutical PreparationsPhaseProcessProtein ConformationRaman Spectrum AnalysisResearchResearch Project GrantsResearch ProposalsResolutionRisk AssessmentScreening for cancerSensitivity and SpecificitySignal TransductionSpecificitySpeedTechniquesTechnologyTimeTissue SampleTissuesVariantaccurate diagnosticsbasebonebone imagingcancer imagingcancer initiationcancer riskcellular imagingclinical diagnosticscommercializationcostdata acquisitiondeep field surveydeep learningdeep learning algorithmdetection sensitivitydiagnostic tooldrug discoveryfollow-upimaging modalityimaging platformimaging systemimprovedinstrumentmachine learning algorithmmolecular imagingnovelnovel diagnosticsnovel strategiesoptical imagingpractical applicationpre-clinicalpreventprognostic valueprogramsprotein structureprototyperesearch studyresponsescreeningsuccesstooltumortumor progressionvibration
项目摘要
An exploratory research project will develop deep-UV Raman microscopic hyperspectral imaging for molecular
and/or cellular analysis of biological tissues with a goal of the early detection, improved screening, and clinical
diagnostics of cancer. Raman microscopy is often used in cancer biology to identify occurring chemical changes;
however, the sensitivity and specificity of detection remain to be a challenge. This gap of fundamental knowledge
on how to improve the information context of such images will be addressed by utilizing deep UV excitation,
which, through resonance excitation of specific molecules will enhance specificity of molecular detection and
improve the sensitivity by enhancing the signal against the background. To further improve the image-based
analysis and screening, a novel hyperspectral image analysis platform will be developed. The proposed research
program fills the technology gaps by developing an instrument, capable of performing Raman imaging at least
100 times faster, acquire new information through assessing low-frequency Raman modes, while reducing the
cost and the footprint to accelerate the wide-spread availability of the instrument. The new imaging system
augmented with novel hyperspectral imaging algorithms to handle multidimensional imaging data will be applied
to advance a challenging biopsy of bone tumors, one of the most devastating consequences of many cancers
with the goal to achieve 95% specificity. In Aim 1, a novel, patent-pending, wide-field deep UV hyperspectral
Raman imaging platform will be optimized for cancer tissue samples. A working prototype will be built, and its
performance will be experimentally characterized. In Aim 2, a data analysis platform with machine and deep
learning algorithms for pathology of bone tissue will be developed. Advanced imaging algorithms that take into
account many small changes in addition to a traditional analysis of Raman spectra will be used. Machine learning
and deep learning techniques will be developed to automatically determine abnormalities beyond current yes/no
tumor paradigm. In Aim 3, the developed platform will be validated as a novel analysis strategy. Research will
focus on distinguishing tumors in the animal model of metastatic bone cancer and developing a set of optical
markers to enable rapid identification of tumors. The proposed strategy offers a novel enabling technology to
elucidate basic mechanisms underlying cancer initiation and progression and will facilitate early cancer detection,
screening, and/or cancer risk assessment, by differentiating, evaluating and/or observing cancer stages and
progression. The overall approach targets the wide spread of the technology, its relatively low-cost and seamless
transition to clinical setting. The R33 phase will improve the sensitivity of detection and identify the pathways
toward commercialization. The research study will also provide a roadmap to develop a new advanced approach
for studying a variety of bone-related tumors and identify novel preclinical and clinical assays.
一个探索性研究项目将开发分子的深紫外拉曼显微高光谱成像
和/或生物组织的细胞分析,目的是早期检测、改进筛查和临床
癌症的诊断。拉曼显微镜经常用于癌症生物学来识别发生的化学变化;
然而,检测的敏感性和特异性仍然是一个挑战。这种基础知识的差距
将通过利用深紫外激发来解决如何改善此类图像的信息背景,
通过特定分子的共振激发,增强分子检测的特异性,
通过增强背景信号来提高灵敏度。进一步完善基于图像的
分析和筛选,将开发一种新型的高光谱图像分析平台。拟议的研究
该计划通过开发至少能够执行拉曼成像的仪器来填补技术空白
速度提高 100 倍,通过评估低频拉曼模式获取新信息,同时减少
成本和占地面积,以加速仪器的广泛可用性。新的成像系统
将应用新的高光谱成像算法来处理多维成像数据
推进骨肿瘤的挑战性活检,骨肿瘤是许多癌症最具破坏性的后果之一
目标是实现 95% 的特异性。在目标 1 中,一种新颖的、正在申请专利的宽视场深紫外高光谱
拉曼成像平台将针对癌症组织样本进行优化。将构建一个工作原型,其
性能将通过实验来表征。在Aim 2中,一个具有机器和深度的数据分析平台
将开发骨组织病理学的学习算法。先进的成像算法,考虑到
除了使用拉曼光谱的传统分析之外,还考虑了许多小的变化。机器学习
将开发深度学习技术来自动确定超出当前是/否范围的异常情况
肿瘤范式。在目标 3 中,开发的平台将被验证为一种新颖的分析策略。研究将
专注于区分转移性骨癌动物模型中的肿瘤并开发一套光学
标记物能够快速识别肿瘤。所提出的策略提供了一种新颖的使能技术
阐明癌症发生和进展的基本机制,并将促进早期癌症检测,
通过区分、评估和/或观察癌症阶段和/或癌症风险评估
进展。总体方法的目标是技术的广泛传播,其相对低成本和无缝
过渡到临床环境。 R33 相将提高检测的灵敏度并识别途径
走向商业化。该研究还将提供开发新的先进方法的路线图
用于研究各种骨相关肿瘤并确定新的临床前和临床检测方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Y. Berezin其他文献
Temperature-dependent shape-responsive fluorescent nanospheres for image-guided drug delivery
- DOI:
10.1039/c6tc00122j - 发表时间:
2016-02 - 期刊:
- 影响因子:6.4
- 作者:
Shawn He;George Tourkakis;Oleg Berezin;Nikolay Gerasimchuk;Hairong Zhang;Haiying Zhou;Asaf Izraely;Walter J. Akers;Mikhail Y. Berezin - 通讯作者:
Mikhail Y. Berezin
DRG Explant Model: Elucidating Mechanisms of Oxaliplatin-Induced Peripheral Neuropathy and Identifying Potential Therapeutic Targets
DRG 外植体模型:阐明奥沙利铂诱导的周围神经病变的机制并确定潜在的治疗靶点
- DOI:
10.1101/2023.10.05.560580 - 发表时间:
2023-10-08 - 期刊:
- 影响因子:0
- 作者:
Junwei Du;Lel;C. Sudlow;Igor D. Luzhansky;Mikhail Y. Berezin - 通讯作者:
Mikhail Y. Berezin
Investigating chemotherapy effects on peripheral nerve elasticity
研究化疗对周围神经弹性的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vsevolod Cheburkanov;Junwei Du;Mikhail Y. Berezin;Vladislav V. Yakovlev - 通讯作者:
Vladislav V. Yakovlev
Identification Drug Targets for Oxaliplatin-Induced Cardiotoxicity without Affecting Cancer Treatment through Inter Variability Cross-Correlation Analysis (IVCCA)
通过变异互相关分析 (IVCCA) 确定奥沙利铂引起的心脏毒性的药物靶标,而不影响癌症治疗
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Junwei Du;Leland C. Sudlow;Hridoy Biswas;Joshua D. Mitchell;Shamim A. Mollah;Mikhail Y. Berezin - 通讯作者:
Mikhail Y. Berezin
Mikhail Y. Berezin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Y. Berezin', 18)}}的其他基金
Molecular and cellular imaging of bone biopsies using AI augmented deep UV Raman microscopy
使用 AI 增强深紫外拉曼显微镜对骨活检进行分子和细胞成像
- 批准号:
10657760 - 财政年份:2022
- 资助金额:
$ 21.72万 - 项目类别:
AN IMAGING-BASED APPROACH TO UNDERSTAND AND PREDICT CHEMOTHERAPY INDUCED PERIPHERAL NEUROPATHY
基于成像的方法来理解和预测化疗引起的周围神经病变
- 批准号:
9981988 - 财政年份:2017
- 资助金额:
$ 21.72万 - 项目类别:
AN IMAGING-BASED APPROACH TO UNDERSTAND AND PREDICT CHEMOTHERAPY INDUCED PERIPHERAL NEUROPATHY
基于成像的方法来理解和预测化疗引起的周围神经病变
- 批准号:
10220889 - 财政年份:2017
- 资助金额:
$ 21.72万 - 项目类别:
AN IMAGING-BASED APPROACH TO UNDERSTAND AND PREDICT CHEMOTHERAPY INDUCED PERIPHERAL NEUROPATHY
基于成像的方法来理解和预测化疗引起的周围神经病变
- 批准号:
9751226 - 财政年份:2017
- 资助金额:
$ 21.72万 - 项目类别:
ASSESSMENT OF CHEMOTHERAPY-INDUCED PERIPHERAL NEUROPATHY WITH ACTIVABLE PROBES
使用可激活探针评估化疗引起的周围神经病变
- 批准号:
8958415 - 财政年份:2015
- 资助金额:
$ 21.72万 - 项目类别:
FLUORESCENCE SPECTROPHOTOMETER IN NIR RANGE FOR BIOLOGICAL AND MEDICAL APPLICATIO
用于生物和医学应用的近红外范围荧光分光光度计
- 批准号:
8052140 - 财政年份:2011
- 资助金额:
$ 21.72万 - 项目类别:
DEVELOPMENT OF OPTICAL NANOTHERMOMETERS FOR MEDICAL APPLICATIONS
医疗应用光学纳米温度计的开发
- 批准号:
7875648 - 财政年份:2010
- 资助金额:
$ 21.72万 - 项目类别:
DEVELOPMENT OF OPTICAL NANOTHERMOMETERS FOR MEDICAL APPLICATIONS
医疗应用光学纳米温度计的开发
- 批准号:
8054330 - 财政年份:2010
- 资助金额:
$ 21.72万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 21.72万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 21.72万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 21.72万 - 项目类别:
Identifying Circuit Dynamics Underlying Motor Dysfunction in Parkinsons Disease Using Real-Time Neural Control
使用实时神经控制识别帕金森病运动功能障碍背后的电路动力学
- 批准号:
10734559 - 财政年份:2023
- 资助金额:
$ 21.72万 - 项目类别:
5T-IV: photoacoustic needle with beacon pulse for ultrasound guided vascular access with Tool-Tip Tracking and Tissue Typing
5T-IV:带有信标脉冲的光声针,用于通过工具提示跟踪和组织分型进行超声引导血管通路
- 批准号:
10677283 - 财政年份:2023
- 资助金额:
$ 21.72万 - 项目类别: