Mechanisms and consequence of helical shape generation in Helicobacter pylori
幽门螺杆菌螺旋形状产生的机制和后果
基本信息
- 批准号:10411966
- 负责人:
- 金额:$ 47.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAntibodiesBacteriaBindingBiochemicalBiophysical ProcessCampylobacterCancer EtiologyCaulobacter crescentusCell ShapeCell WallCell surfaceCellsChemicalsChronicClinicalClinical PathologyCollectionCommunicable DiseasesComplexCytoskeletal ProteinsCytosolDataDefectDiseaseElasticityEscherichia coliGastric GlandsGastritisGenerationsHelicobacter pyloriHeterogeneityHomologous GeneHumanHydrolaseImmune responseInfectionInflammationLabelLinkMaintenanceMapsMeasuresMembraneMetabolicMetabolismMicrobial BiofilmsMicroscopyMinorMissionModelingModificationMovementMusMutation AnalysisN-Acetylmuramoyl-L-alanine AmidaseNamesNational Institute of Allergy and Infectious DiseaseNutrientOutcomePathogenesisPatternPenetrationPeptic UlcerPeptidoglycanPhenotypePolymersProteinsProteobacteriaRadiationRecoveryResolutionRodRoleShapesSignal TransductionStomachStructureStudy modelsTestingThree-Dimensional ImageVibrioVibrio choleraeWorkcell motilitychronic infectiongene discoveryimage reconstructioninhibitormalignant stomach neoplasmmortalitymutantnew therapeutic targetpathogenperiplasmpersistent bacteriaphysical propertypressuretooluptake
项目摘要
Bacteria come in many shapes, which may enhance motility, biofilm formation, nutrient uptake, and
pathogenesis. However, these functional consequences of shape have not been well studied, owing in part to a
paucity of tools to manipulate bacterial cell shape. To probe how form (cell shape) drives function (radiation to
diverse niches), we must first understand how shape is generated. Bacterial shapes varying from spheres to
rods to helices all arise from the same cell wall polymer: peptidoglycan (PG). The PG wall surrounds the cell to
contain turgor pressure. The major hypothesis in the field holds that diverse shapes arise from different patterns
of PG synthesis. Indeed Escherichia coli, a straight rod, and Caulobacter crescentus and Vibrio cholerae, curved
rods, require cytoskeletal proteins to modulate their PG synthesis patterns. Mechanisms that create helical cells,
seen in multiple lineages of bacteria, have not been elucidated.
Helicobacter pylori has emerged as the leading model for the study of helical shape. This bacterium persistently
colonizes the human stomach causing chronic inflammation and clinical pathologies ranging from peptic ulcers
to gastric cancer, the world’s third leading cause of cancer mortality in 2012 [2]. We isolated mutants with stable
non-helical shapes, and our work demonstrating their defects in stomach colonization presented the first
experimental evidence for a link between cell shape and bacterial infectivity that has now been extended to other
bacteria (Vibrio, Campylobacter) [3-5]. However, we only have a cursory understanding of the importance of
shape in initial infection and do not understand how altered shape impacts long-term colonization, niche
acquisition, or host immune responses.
Furthermore, H. pylori’s strategy for maintaining helical shape differs significantly from bacteria studied thus far.
Five of our shape mutants map to confirmed PG hydrolases suggesting a model whereby helical shape arises
from structural modification of PG rather than modulation of PG synthesis [5-7]. Homologues of these hydrolases
can be found in several Proteobacteria classes, most of which are curved/helical, indicating that other bacteria
may also employ direct modification of the PG to achieve curvature and twist [5, 8, 9].
The main hypothesis that guides this proposal is that spatially localized PG hydrolases promote H. pylori
helical shape, which allows colonization of distinct niches from non-helical bacteria and underlies
persistent infection. Our collection of non-helical mutants provides unique opportunities to explore the
mechanisms of helical cell shape generation and maintenance in bacteria as well as the functional role(s) of cell
shape in niche acquisition and persistent colonization.
A more complete understanding of the causes and consequences of helical cell shape could elucidate
new therapeutic targets in H. pylori and other curved and helical pathogens, and will thus further the
mission of NIAID to understand and treat infectious diseases.
细菌有多种形状,可以增强运动性、生物膜形成、营养吸收和
然而,形状的这些功能性后果尚未得到充分研究,部分原因是
缺乏操纵细菌细胞形状的工具来探究形状(细胞形状)如何驱动功能(辐射)。
不同的生态位),我们必须首先了解不同球形的细菌形状是如何产生的。
从杆到螺旋都来自相同的细胞壁聚合物:肽聚糖(PG)壁包围着细胞。
该领域的主要假设认为不同的形状源于不同的模式。
事实上,大肠杆菌是直杆,新月柄杆菌和霍乱弧菌是弯曲的。
杆状细胞需要细胞骨架蛋白来调节其 PG 合成模式,从而产生螺旋细胞。
存在于多种细菌谱系中,但尚未得到阐明。
幽门螺杆菌已成为研究螺旋形状的主要模型。
定植于人类胃部,引起慢性炎症和消化性溃疡等临床病理
胃癌是 2012 年世界第三大癌症死亡原因 [2]。
非螺旋形状,我们的工作展示了它们在胃定植中的缺陷,这是第一个
细胞形状与细菌感染性之间存在联系的实验证据现已扩展到其他领域
然而,我们对细菌(弧菌、弯曲杆菌)的重要性只有粗略的了解。
初始感染时的形状,但不了解形状如何影响长期定植、生态位
获得性或宿主免疫反应。
此外,幽门螺杆菌维持螺旋形状的策略与迄今为止研究的细菌显着不同。
我们的五个形状突变体映射到已确认的 PG 水解酶,表明螺旋形状出现的模型
来自 PG 的结构修饰而不是这些水解酶的同系物的调节 [5-7]。
可以在几个变形菌纲中找到,其中大多数是弯曲/螺旋的,表明其他细菌
也可以采用直接修改 PG 来实现曲率和扭曲 [5,8,9]。
指导该提议的主要假设是空间定位的 PG 水解酶促进幽门螺杆菌
螺旋形状,允许非螺旋细菌和底层细菌在不同的生态位中定殖
我们收集的非螺旋突变体为探索持续感染提供了独特的机会。
细菌螺旋细胞形状生成和维持的机制以及细胞的功能作用
利基获取和持续殖民的形状。
更全面地了解螺旋细胞形状的原因和后果可以阐明
幽门螺杆菌和其他弯曲和螺旋病原体的新治疗靶点,因此将进一步推动
NIAID 的使命是了解和治疗传染病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nina Salama其他文献
Nina Salama的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nina Salama', 18)}}的其他基金
Gastrointestinal microbiota interactions modulating gastric cancer progression
胃肠道微生物群相互作用调节胃癌进展
- 批准号:
10430828 - 财政年份:2022
- 资助金额:
$ 47.57万 - 项目类别:
Gastrointestinal microbiota interactions modulating gastric cancer progression
胃肠道微生物群相互作用调节胃癌进展
- 批准号:
10649494 - 财政年份:2022
- 资助金额:
$ 47.57万 - 项目类别:
Mechanisms and consequence of helical shape generation in Helicobacter pylori
幽门螺杆菌螺旋形状产生的机制和后果
- 批准号:
10166763 - 财政年份:2018
- 资助金额:
$ 47.57万 - 项目类别:
Mechanisms and consequence of helical shape generation in Helicobacter pylori
幽门螺杆菌螺旋形状产生的机制和后果
- 批准号:
10593360 - 财政年份:2018
- 资助金额:
$ 47.57万 - 项目类别:
Elucidation of a bacterial cell shape generating program and pathogenic functions
阐明细菌细胞形状生成程序和致病功能
- 批准号:
8256474 - 财政年份:2011
- 资助金额:
$ 47.57万 - 项目类别:
Elucidation of a bacterial cell shape generating program and pathogenic functions
阐明细菌细胞形状生成程序和致病功能
- 批准号:
8384833 - 财政年份:2011
- 资助金额:
$ 47.57万 - 项目类别:
Elucidation of a bacterial cell shape generating program and pathogenic functions
阐明细菌细胞形状生成程序和致病功能
- 批准号:
8586518 - 财政年份:2011
- 资助金额:
$ 47.57万 - 项目类别:
Elucidation of a bacterial cell shape generating program and pathogenic functions
阐明细菌细胞形状生成程序和致病功能
- 批准号:
8770013 - 财政年份:2011
- 资助金额:
$ 47.57万 - 项目类别:
THE ROLE OF CELL SHAPE AND CELL WALL IN HELICOBACTER PYLORI PATHOGENESIS
细胞形状和细胞壁在幽门螺杆菌发病机制中的作用
- 批准号:
7843536 - 财政年份:2009
- 资助金额:
$ 47.57万 - 项目类别:
THE ROLE OF CELL SHAPE AND CELL WALL IN HELICOBACTER PYLORI PATHOGENESIS
细胞形状和细胞壁在幽门螺杆菌发病机制中的作用
- 批准号:
7638893 - 财政年份:2009
- 资助金额:
$ 47.57万 - 项目类别:
相似国自然基金
纳米抗体工程化细菌外膜囊泡联合光免疫制剂激活cGAS-STING通路诱导大肠癌抗肿瘤免疫的机制研究
- 批准号:82373775
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
双特异性抗体囊泡对胞内细菌感染的免疫综合机制研究
- 批准号:82304366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于EvolvR技术与噬菌体展示的纳米抗体细菌体内连续定向进化系统研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
细菌外膜囊泡联合递送新生抗原和PD-L1抗体的肿瘤免疫治疗研究
- 批准号:82003259
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
靶向细菌自转运粘附素中庚糖基化修饰的单克隆抗体的制备
- 批准号:21807112
- 批准年份:2018
- 资助金额:24.2 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of phospholipids in antifungal drug resistance in Cryptococcus neoformans
磷脂在新型隐球菌抗真菌药物耐药性中的作用
- 批准号:
10389392 - 财政年份:2022
- 资助金额:
$ 47.57万 - 项目类别:
Injectable Hydrogel Depots for Self-replicating mRNA Vaccine Delivery
用于自我复制 mRNA 疫苗递送的可注射水凝胶库
- 批准号:
10664048 - 财政年份:2022
- 资助金额:
$ 47.57万 - 项目类别:
Role of phospholipids in antifungal drug resistance in Cryptococcus neoformans
磷脂在新型隐球菌抗真菌药物耐药性中的作用
- 批准号:
10654524 - 财政年份:2022
- 资助金额:
$ 47.57万 - 项目类别:
Injectable Hydrogel Depots for Self-replicating mRNA Vaccine Delivery
用于自我复制 mRNA 疫苗递送的可注射水凝胶库
- 批准号:
10438409 - 财政年份:2022
- 资助金额:
$ 47.57万 - 项目类别:
Role of phospholipids in antifungal drug resistance in Cryptococcus neoformans
磷脂在新型隐球菌抗真菌药物耐药性中的作用
- 批准号:
10389392 - 财政年份:2022
- 资助金额:
$ 47.57万 - 项目类别: