SCH: A Computer Vision and Lens-Free Imaging System for Automatic Monitoring of Infections
SCH:用于自动监测感染的计算机视觉和无镜头成像系统
基本信息
- 批准号:10408071
- 负责人:
- 金额:$ 27.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAntibiotic TherapyAntibioticsBacteriaBacteriuriaCaregiversCathetersCationsCellsCerebrospinal FluidClassificationClinicalComputer Vision SystemsComputersDataDetectionDevelopmentDevicesDiagnosticDiffusionEarly DiagnosisEngineeringErythrocytesEvaluationGoalsHospital NursingImageInfectionInstructionKnowledgeLabelLaboratoriesLeadLeukocytesLightLightingLiquid substanceMachine LearningManualsMapsMeasurementMethodsMicroscopeModalityModern MedicineMonitorNursing HomesOpticsPatientsPerformancePhysicsPhysiologicalPrevalencePrincipal InvestigatorProceduresProcessResistanceResolutionRiskSamplingScientistSignal TransductionSpecimenSupervisionSurfaceSystemTechnologyTestingTrainingUrinalysisUrinary CatheterizationUrinary tract infectionUrinebasebiological heterogeneityclassification algorithmcostdeep learning algorithmdesigndiffraction of lightheterogenous datahologramimage processingimage reconstructionimagerimaging systemlaboratory facilitylensmachine learning algorithmmultidisciplinarynetwork architecturenovelparticlereconstructionscreeningsoftware developmenttoolurinary
项目摘要
Automated monitoring and screening of various physiological signals is an indispensable tool in modern medicine. However, despite the
preponderance of long-term monitoring and screening modalities for certain vital signals, there are a significant number of applications for
which no automated monitoring or screening is available. For example, patients in need of urinary catheterization are at significant risk of
urinary tract infections, but long-term monitoring for a developing infection while a urinary catheter is in place typically requires a caregiver to
frequently collect urine samples which then must be transported to a laboratory facility to be tested for a developing infection. Disruptive
technologies at the intersection of lens-free imaging, fluidics, image processing, computer vision and machine learning offer a tremendous
opportunity to develop new devices that can be connected to a urinary catheter to automatically monitor urinary tract infections. However, novel
image reconstruction, object detection and classification, and deep learning algorithms are needed to deal with challenges such as low image
resolution, limited labeled data, and heterogeneity of the abnormalities to be detected in urine samples.
This project brings together a multidisciplinary team of computer scientists, engineers and clinicians to design, develop and test a system that
integrates lens-free imaging, fluidics, image processing, computer vision and machine learning to automatically monitor urinary tract infections.
The system will take a urine sample as an input, image the sample with a lens-free microscope as it flows through a fluidic channel, reconstruct
the images using advanced holographic reconstruction algorithms, and detect and classify abnormalities, e.g., white blood cells, using
advanced computer vision and machine learning algorithms. Specifically, this project will: (1) design fluidic and optical hardware to
appropriately sample urine from patient lines, flow the sample through the lens-free imager, and capture holograms of the sample; (2) develop
holographic image reconstruction algorithms based on deep network architectures constrained by the physics of light diffraction to produce high
quality images of the specimen from the lens-free holograms; (3) develop deep learning algorithms requiring a minimal level of manual
supervision to detect various abnormalities in the fluid sample that might be indicative of a developing infection (e.g., the presence of white
bloods cells or bacteria); and (4) integrate the above hardware and software developments into a system to be validated on urine samples
obtained from patient discards against standard urine monitoring and screening methods.
RELEVANCE (See instructions):
This project could lead to the development of a low-cost device for automated screening and monitoring of urinary tract infections (the most
common hospital and nursing home acquired infection), and such a device could eliminate the need for patients or caregivers to manually collect
urine samples and transport them to a laboratory facility for testing and enable automated long-term monitoring and screening for UTIs. Early
detection of developing UTIs could allow caregivers to preemptively remove the catheter before the UTI progressed to the point of requiring
antibiotic treatment, thus reducing overall antibiotic usage. The technology to be developed in this project could also be used for screening
abnormalities in other fluids, such as central spinal fluid, and the methods to detect and classify large numbers of cells in an image could lead to
advances in large scale multi-object detection and tracking for other computer vision applications.
各种生理信号的自动监测和筛查是现代医学中不可或缺的工具。然而,尽管
由于某些生命信号的长期监测和筛查方式占主导地位,因此有大量应用
没有可用的自动监控或筛查。例如,需要导尿的患者面临着巨大的风险:
尿路感染,但在留有导尿管时长期监测正在发生的感染通常需要护理人员
经常收集尿液样本,然后必须将其运送到实验室设施以检测是否存在感染。破坏性的
无透镜成像、流体学、图像处理、计算机视觉和机器学习的交叉技术提供了巨大的
有机会开发可连接到导尿管以自动监测尿路感染的新设备。不过,小说
需要图像重建、目标检测和分类以及深度学习算法来应对低图像等挑战
分辨率、有限的标记数据以及尿液样本中检测到的异常的异质性。
该项目汇集了由计算机科学家、工程师和临床医生组成的多学科团队,设计、开发和测试一个系统,该系统
集成了无透镜成像、流体学、图像处理、计算机视觉和机器学习,可自动监测尿路感染。
该系统将以尿液样本作为输入,当样本流经流体通道时用无透镜显微镜对样本进行成像,重建
使用先进的全息重建算法处理图像,并使用以下方法检测和分类异常情况,例如白细胞
先进的计算机视觉和机器学习算法。具体来说,该项目将:(1)设计流体和光学硬件
从患者导管中适当取样尿液,使样本流过无透镜成像仪,并捕获样本的全息图; (2) 开发
基于受光衍射物理约束的深层网络架构的全息图像重建算法,可产生高
来自无透镜全息图的样本的高质量图像; (3) 开发需要最低限度手动操作的深度学习算法
监督以检测液体样本中可能表明正在发生感染的各种异常情况(例如,存在白色
血细胞或细菌); (4) 将上述硬件和软件开发集成到一个系统中,以对尿液样本进行验证
根据标准尿液监测和筛查方法从患者丢弃物中获得。
相关性(参见说明):
该项目可能会导致开发一种低成本设备,用于自动筛查和监测尿路感染(最常见的尿路感染)
常见的医院和疗养院获得性感染),这样的设备可以消除患者或护理人员手动收集的需要
尿液样本并将其运送到实验室设施进行测试,并实现尿路感染的自动长期监测和筛查。早期的
检测正在发生的尿路感染可以让护理人员在尿路感染发展到需要治疗的程度之前抢先拔除导管
抗生素治疗,从而减少抗生素的总体使用。该项目开发的技术也可用于筛选
其他液体(例如中央脊髓液)的异常,以及检测和分类图像中大量细胞的方法可能会导致
其他计算机视觉应用的大规模多目标检测和跟踪方面的进展。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generative optical modeling of whole blood for detecting platelets in lens-free images.
全血的生成光学模型,用于检测无透镜图像中的血小板。
- DOI:
- 发表时间:2020-04-01
- 期刊:
- 影响因子:3.4
- 作者:Haeffele, Benjamin D;Pick, Christian;Lin, Ziduo;Mathieu, Evelien;Ray, Stuart C;Vidal, René
- 通讯作者:Vidal, René
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin D Haeffele其他文献
Benjamin D Haeffele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin D Haeffele', 18)}}的其他基金
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 27.46万 - 项目类别:
SCH: A Computer Vision and Lens-Free Imaging System for Automatic Monitoring of Infections
SCH:用于自动监测感染的计算机视觉和无镜头成像系统
- 批准号:
10162472 - 财政年份:2019
- 资助金额:
$ 27.46万 - 项目类别:
SCH: A Computer Vision and Lens-Free Imaging System for Automatic Monitoring of Infections
SCH:用于自动监测感染的计算机视觉和无镜头成像系统
- 批准号:
10019459 - 财政年份:2019
- 资助金额:
$ 27.46万 - 项目类别:
相似国自然基金
基于“成分-肠道菌群-胆汁酸轴”研究生姜-干姜走守并用治疗抗生素相关性腹泻配伍机理
- 批准号:82374053
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
抗生素治疗药物监测及耐药症候一体化阵列传感技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗生素治疗压力下养殖场废弃物中抗生素抗性基因水平转移机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有内源抗炎活性的聚乙二醇化氨基糖苷类抗生素在脓毒症治疗中的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有内源抗炎活性的聚乙二醇化氨基糖苷类抗生素在脓毒症治疗中的应用研究
- 批准号:32101073
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging Molecular Technologies to Improve Diagnosis and Management of Pediatric Acute Respiratory Illness in Resource-Constrained Settings
利用分子技术改善资源有限环境中儿科急性呼吸系统疾病的诊断和管理
- 批准号:
10739603 - 财政年份:2023
- 资助金额:
$ 27.46万 - 项目类别:
Development and implementation of a pediatric AI multi-modal digital stethoscope and respiratory surveillance system in South Africa
在南非开发和实施儿科人工智能多模态数字听诊器和呼吸监测系统
- 批准号:
10740943 - 财政年份:2023
- 资助金额:
$ 27.46万 - 项目类别:
Noninvasive Diagnostic Markers of Lower Respiratory Tract Infection in Mechanically Ventilated Patients
机械通气患者下呼吸道感染的无创诊断标志物
- 批准号:
10697471 - 财政年份:2023
- 资助金额:
$ 27.46万 - 项目类别:
Clinical decision support algorithm to optimize management of respiratory tract infection in children attending primary health facilities in Kilimanjaro Region, Tanzania
用于优化坦桑尼亚乞力马扎罗地区初级卫生机构儿童呼吸道感染管理的临床决策支持算法
- 批准号:
10734148 - 财政年份:2023
- 资助金额:
$ 27.46万 - 项目类别:
Systems Epigenomics of Persistent Bloodstream Infection
持续性血流感染的系统表观基因组学
- 批准号:
10551703 - 财政年份:2023
- 资助金额:
$ 27.46万 - 项目类别: