Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
基本信息
- 批准号:10406825
- 负责人:
- 金额:$ 1.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesBiochemical PathwayBrainChromosome MappingCocaineCommunitiesComputing MethodologiesConsumptionCustomDataData AnalysesData SetDevelopmentDrug AddictionDrug abuseEngineeringFentanylGene ExpressionGenesGeneticGenetic TranscriptionGenetic VariationGenomeGenomic SegmentHaplotypesInbred StrainInbred Strains MiceIndividualMeasuresMethamphetamineMethodsMorbidity - disease rateMorphineMusNicotinePathway interactionsPatternPhenotypePlayPopulationPopulations at RiskPredispositionPreventionPropertyPublic HealthResearch PersonnelRoleScienceTestingTimeTissuesValidationWorkaddictionbasecomputerized toolscostdrug of abuseexperimental studygenetic analysisgenetic variantinterestlarge datasetsmetabolomicsmultiple omicsnew therapeutic targetnovelresponsesocietal coststherapeutic developmenttrait
项目摘要
Project Summary/Abstract
Due to the increased morbidity and societal cost of drug abuse, identification of genetic factors affecting the
response to drugs of abuse (DOA) are of particular interest because this will aid in identifying at risk populations
and could provide potential novel targets for therapeutic development. However, a major challenge in biomedical
science is determining how genetic differences within a population affect the properties (i.e. phenotypes, traits)
of an individual. Using conventional methods, it often requires years of painstaking work to discover and
characterize a genetic variant that affects a given phenotypic response. Several years ago, we developed a more
efficient method for mapping genes to traits, called haplotype-based computational genetic mapping (HBCGM).
In an HBCGM experiment, a property of interest is measured in inbred mouse strains; and genetic factors are
computationally predicted by identifying the genomic regions where the pattern of genetic variation correlates
with the distribution of trait values among the strains. HBCGM analyses are completed much more quickly than
conventional genetic analysis methods. However, the methods used for experimental validation of genetic factors
have limitations and are time consuming.
This project will further develop computational methods that will enable genetic factors affecting many important
biomedical traits to be discovered and experimentally characterized. A high-throughput version of HBCGM (HT-
HBCGM) will be used to analyze 8,225 publicly available datasets, which measure 213,000 responses in panels
of inbred mouse strains. We deploy a novel method that increases genetic discovery power by exploiting the
redundancy present in the many datasets that examine similar responses. Novel computational tools that
facilitate the integrated analysis of genetic, transcriptional and metabolomic data will also be developed. This
includes specialized metabolic networks (for brain and 3 other tissues) for computationally identifying
metabolomic changes that correlate with gene expression or genetic differences. To stimulate other investigators
to make genetic discoveries, all results and methods from this project will be made fully available to the scientific
community. These computational tools will be used to analyze customized ‘multi-omic’ (genetic, transcriptional,
and metabolomic) datasets that measure: (i) fifteen responses of inbred strain panels to four DOA (cocaine,
methamphetamine, fentanyl, and nicotine); and (ii) corresponding DOA induced transcriptional and
metabolomic changes in brain. Integrated analysis of this data will identify genes/pathways affecting the
response to DOA. We then apply a high efficiency method for engineering specific allelic changes into the
genome of inbred strains, and the engineered lines are used to experimentally test the effect of an identified
genetic factor on the response to a DOA.
项目概要/摘要
由于药物滥用的发病率和社会成本增加,影响药物滥用的遗传因素的鉴定
对滥用药物 (DOA) 的反应特别令人感兴趣,因为这将有助于识别高危人群
并可以为治疗开发提供潜在的新靶标,然而,这是生物医学领域的一个重大挑战。
科学正在确定群体内的遗传差异如何影响特性(即表型、性状)
使用传统方法,通常需要多年的艰苦工作才能发现和发现。
表征影响给定表型反应的遗传变异几年前,我们开发了一种更有效的方法。
将基因映射到性状的有效方法,称为基于单倍型的计算遗传图谱(HBCGM)。
在 HBCGM 实验中,测量近交系小鼠的感兴趣特性,并测量遗传因素;
通过识别与遗传变异模式相关的基因组区域进行计算预测
随着菌株之间性状值的分布,HBCGM 分析的完成速度比 HBCGM 快得多。
然而,传统的遗传分析方法用于遗传因素的实验验证。
有局限性并且耗时。
该项目将进一步开发计算方法,使遗传因素能够影响许多重要的因素
待发现和实验表征的高通量版本的 HBCGM(HT-)。
HBCGM)将用于分析 8,225 个公开可用的数据集,这些数据集测量了面板中的 213,000 个回复
我们采用了一种新方法,通过利用
许多数据集中存在检查类似响应的新颖计算工具。
还将开发促进遗传、转录和代谢组数据的综合分析。
包括用于计算识别的专门代谢网络(针对大脑和其他 3 个组织)
与基因表达或遗传差异相关的代谢组变化刺激其他研究人员。
为了进行基因发现,该项目的所有结果和方法将充分提供给科学界
这些计算工具将用于分析定制的“多组学”(遗传、转录、
和代谢组学)数据集测量:(i)近交系组对四种 DOA(可卡因、
甲基苯丙胺、芬太尼和尼古丁);以及(ii)相应的 DOA 诱导的转录和
对这些数据的综合分析将确定影响大脑代谢组变化的基因/途径。
然后,我们应用高效方法将特定等位基因变化工程化到 DOA 中。
近交系的基因组,并且工程系用于通过实验测试已鉴定的效果
遗传因素对 DOA 反应的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY A PELTZ其他文献
GARY A PELTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY A PELTZ', 18)}}的其他基金
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10198889 - 财政年份:2017
- 资助金额:
$ 1.39万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
9926473 - 财政年份:2017
- 资助金额:
$ 1.39万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10515960 - 财政年份:2017
- 资助金额:
$ 1.39万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10515960 - 财政年份:2017
- 资助金额:
$ 1.39万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10075085 - 财政年份:2017
- 资助金额:
$ 1.39万 - 项目类别:
Stem Cell-Based In vivo Models of Human Genetic Liver Diseases
基于干细胞的人类遗传性肝病体内模型
- 批准号:
8812710 - 财政年份:2015
- 资助金额:
$ 1.39万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
MicroRNA lipid-nanoparticle based therapy targets neuroinflammation and ApoE dysregulation in Alzheimer’s disease
基于 MicroRNA 脂质纳米颗粒的疗法针对阿尔茨海默病中的神经炎症和 ApoE 失调
- 批准号:
10667157 - 财政年份:2023
- 资助金额:
$ 1.39万 - 项目类别:
Identifying mechanistic pathways underlying RPE pathogenesis in models of pattern dystrophy
识别模式营养不良模型中 RPE 发病机制的机制途径
- 批准号:
10636678 - 财政年份:2023
- 资助金额:
$ 1.39万 - 项目类别:
The role of USP27X-Cyclin D1 axis in HER2 Therapy Resistant Breast Cancer
USP27X-Cyclin D1 轴在 HER2 治疗耐药乳腺癌中的作用
- 批准号:
10658373 - 财政年份:2023
- 资助金额:
$ 1.39万 - 项目类别:
Regulation of Endothelial Lipase and HDL Metabolism by ANGPTL3
ANGPTL3 对内皮脂肪酶和 HDL 代谢的调节
- 批准号:
10582972 - 财政年份:2023
- 资助金额:
$ 1.39万 - 项目类别:
Identification of novel therapeutic combinations for NF2 schwannomas
鉴定 NF2 神经鞘瘤的新型治疗组合
- 批准号:
10564452 - 财政年份:2023
- 资助金额:
$ 1.39万 - 项目类别: