Elucidating repair processes central to fluoroquinolone persistence in growth-inhibited populations
阐明对生长抑制人群中氟喹诺酮持久性至关重要的修复过程
基本信息
- 批准号:10409188
- 负责人:
- 金额:$ 4.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AdjuvantAntibioticsBacteriaBacterial InfectionsBiological AssayCellsChemicalsChromosomesChronicComplementDNADNA DamageDNA MarkersDNA RepairDNA Replication TimingDNA biosynthesisDataDevelopmentDoseDrug Metabolic DetoxicationDrug ToleranceDyesEnzymesEscherichia coliExcisionExhibitsFluorescenceFluorescence MicroscopyFluorescence-Activated Cell SortingFluoroquinolonesGeneticGoalsGram-Negative BacteriaGrowthIndividualInfectionKineticsLeadLevaquinMediator of activation proteinMethodsMicrobial BiofilmsMicroscopyMinimum Inhibitory Concentration measurementModelingModern MedicineMoxifloxacinNucleic AcidsNucleotidesNutrientPathway interactionsPharmaceutical PreparationsPhasePhenotypePopulationProcessPseudomonas aeruginosaRecoveryRegulationRelapseReplication OriginReporterResolutionRifampinSOS ResponseSavingsSiteStainsStarvationSystemTemperatureTestingTimeTreatment FailureWorkantibiotic tolerancebactericidebaseburden of illnessexperienceexperimental studyhomologous recombinationinducible gene expressionmutantnovelpreventprophylacticrecombinational repairrepairedsoft drinktemperature sensitive mutanttime usetreatment duration
项目摘要
Project Summary
Many antibiotics rapidly kill growing populations of bacteria but struggle to kill non-growing populations.
Even for drugs that can kill the majority of growth-inhibited bacteria, such as fluoroquinolones (FQs), the
presence of persisters can lead to treatment failure. While current paradigms suggest that persisters survive
due to limited antibiotic-induced damage, for FQs this is not the case. In non-growing populations, FQ
persisters experience the same amount of antibiotic-induced DNA damage as their genetically identical kin and
require the homologous recombination repair machinery during the post-antibiotic recovery period in order to
survive. Currently, the mechanism underlying why persisters can survive FQ-induced damage while their clonal
kin cannot remains ill-defined. We hypothesize that, i) chromosome number, and ii) the relative timing of DNA
synthesis and repair during the post-antibiotic period, are phenotypic variables that govern the likelihood a
bacterium will be an FQ persister. Since our first hypothesis is based on the importance of homologous
recombination to FQ persistence in growth-inhibited populations, we will use fluorescence-activated cell sorting
(FACS) to sort live wild-type and mutant populations of Escherichia coli based on chromosome number as
determined by staining with cell-permeant nucleic acid dyes, and will subject the isolated populations to
tolerance assays and quantitative PCR for chromosome number verification. To complement these assays, we
will use time-lapse microscopy of an FQ-treated E. coli strain that harbors an origin of replication reporter in
order to visualize the chromosome content of persisters and nonpersisters during the post-FQ recovery period.
Our second hypothesis is based on a recent study from our group that showed that starvation following FQ
treatment increased persister levels in non-growing populations in a RecA- and time-dependent manner. To
test whether the timing of DNA replication vs. DNA repair during recovery impacts FQ persistence, we will
conduct time-lapse fluorescence microscopy of single cells harboring reporters for DNA repair or DNA
replication both in the presence and absence of nutrients. We will then conduct bulk culture experiments by
employing temperature sensitive mutants and inducible systems of the DNA replication and DNA repair
machinery. We will first investigate levofloxacin, a representative FQ, and stationary-phase E. coli cultures,
because non-growing infections are the most difficult to eradicate, before establishing the generality of any
findings by using other FQs (e.g., moxifloxacin) and bacterial species (e.g., Pseudomonas aeruginosa). Data
from these experiments will assess whether chromosome number and the relative timing of DNA synthesis vs.
DNA repair during recovery from FQ treatment are phenotypic variables important for FQ persistence.
Increased understanding of persister survival tactics will open the door for the development of anti-persister
strategies, which would reduce the burden of chronic and relapsing infections.
项目概要
许多抗生素可以快速杀死不断增长的细菌群体,但很难杀死非增长的细菌群体。
即使对于能够杀死大多数生长抑制细菌的药物,例如氟喹诺酮类药物(FQ),
持续存在可能导致治疗失败。虽然当前的范式表明坚持者能够生存
由于抗生素引起的损害有限,对于 FQ 来说情况并非如此。在非增长人口中,FQ
坚持者经历与他们基因相同的亲属相同数量的抗生素引起的 DNA 损伤
在抗生素后恢复期间需要同源重组修复机制,以便
存活。目前,持久性细胞能够在 FQ 引起的损伤中幸存下来,而其克隆细胞却能幸存下来的机制
亲属关系不能一直模糊不清。我们假设,i) 染色体数量,ii) DNA 的相对时间
抗生素后时期的合成和修复是控制可能性的表型变量
细菌将成为 FQ 持久者。由于我们的第一个假设是基于同源的重要性
为了在生长抑制群体中实现 FQ 持久性重组,我们将使用荧光激活细胞分选
(FACS) 根据染色体数目对活的野生型和突变型大肠杆菌群体进行分类
通过用可渗透细胞的核酸染料染色来确定,并对分离的群体进行
用于染色体数目验证的耐受性测定和定量PCR。为了补充这些测定,我们
将使用延时显微镜观察经过 FQ 处理的大肠杆菌菌株,该菌株具有复制起点报告基因
为了可视化 FQ 后恢复期间持久性和非持久性的染色体含量。
我们的第二个假设是基于我们小组最近的一项研究,该研究表明 FQ 后的饥饿
治疗以 RecA 和时间依赖性方式增加非增长人群中的持久性水平。到
测试恢复过程中 DNA 复制与 DNA 修复的时间是否会影响 FQ 持久性,我们将
对带有 DNA 修复报告基因或 DNA 的单细胞进行延时荧光显微镜检查
在有营养物和无营养物的情况下都可以复制。然后我们将进行批量培养实验
采用温度敏感突变体和 DNA 复制和 DNA 修复的诱导系统
机械。我们将首先研究左氧氟沙星(一种代表性 FQ)和稳定期大肠杆菌培养物,
因为在确定任何感染的普遍性之前,非生长性感染是最难根除的
使用其他 FQ(例如莫西沙星)和细菌种类(例如铜绿假单胞菌)得出的结果。数据
这些实验将评估染色体数量和 DNA 合成的相对时间是否与染色体数量和 DNA 合成的相对时间有关。
FQ 治疗恢复期间的 DNA 修复是对 FQ 持久性很重要的表型变量。
对持久者生存策略的更多了解将为反持久者的发展打开大门
战略,这将减轻慢性和复发感染的负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allison Herzfeld其他文献
Allison Herzfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allison Herzfeld', 18)}}的其他基金
Elucidating repair processes central to fluoroquinolone persistence in growth-inhibited populations
阐明对生长抑制人群中氟喹诺酮持久性至关重要的修复过程
- 批准号:
9756674 - 财政年份:2019
- 资助金额:
$ 4.35万 - 项目类别:
Elucidating repair processes central to fluoroquinolone persistence in growth-inhibited populations
阐明对生长抑制人群中氟喹诺酮持久性至关重要的修复过程
- 批准号:
10359138 - 财政年份:2019
- 资助金额:
$ 4.35万 - 项目类别:
Elucidating repair processes central to fluoroquinolone persistence in growth-inhibited populations
阐明对生长抑制人群中氟喹诺酮持久性至关重要的修复过程
- 批准号:
10574520 - 财政年份:2019
- 资助金额:
$ 4.35万 - 项目类别:
相似国自然基金
微藻-细菌协同降解抗生素及其共适应机制
- 批准号:42377367
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗生素废水处理活性污泥中核心黏细菌资源的发掘及其生态功能研究
- 批准号:32300090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微塑料与β-内酰胺类抗生素联合暴露对耐药细菌胞外DNA生物转化的影响机制及其风险预测
- 批准号:52370202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
黏细菌中对氨基苯甲酸肽类抗生素的定向挖掘
- 批准号:82304353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigation of novel chlamydia vaccines in male infection models and sexual transmission challenges
新型衣原体疫苗在男性感染模型和性传播挑战中的研究
- 批准号:
10750828 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
The electrophysiology of biofilm development and drug resistance
生物膜发育和耐药性的电生理学
- 批准号:
10740493 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
Methods to modulate GI inflammatory and infectious diseases
调节胃肠道炎症和传染病的方法
- 批准号:
10867133 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
Defining the host and pathogen determinants of peptidoglycan induced pathophysiology in Lyme disease
定义莱姆病肽聚糖诱导的病理生理学的宿主和病原体决定因素
- 批准号:
10566961 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别:
An intranasal room stable vaccine formulation to prevent Pseudomonas aeruginosa (R21AI169691)
用于预防铜绿假单胞菌的鼻内室内稳定疫苗制剂 (R21AI169691)
- 批准号:
10741018 - 财政年份:2023
- 资助金额:
$ 4.35万 - 项目类别: