Multiscale investigation of cardiomyopathy-associated mutations in metavinculin
美维库林心肌病相关突变的多尺度研究
基本信息
- 批准号:10403271
- 负责人:
- 金额:$ 0.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAffectAmino AcidsAreaAttentionBindingBiological AssayBiological ProcessCardiacCardiac MyocytesCardiomyopathiesCell-Matrix JunctionCellsCouplingDependenceDevelopmentDilated CardiomyopathyDiseaseEducational process of instructingExtracellular MatrixFellowshipGenerationsHeartHeart DiseasesHumanHydrogelsImpairmentIndividualInduced MutationIntercalated discIntercellular JunctionsInvestigationLeadLigandsMeasurementMeasuresMediatingMicrofilamentsMissionMolecularMuscleMuscle CellsMutationOrganizational ChangePathogenicityPathologicPatientsPhysiologicalPlayProcessProtein IsoformsProteinsRNA SplicingResearchRoleSarcomeresSiteStressStructureTailTestingTractionTraction Force MicroscopyTrainingUnited States National Institutes of HealthUniversitiesVCL geneVentricular RemodelingVinculinWashingtonalpha helixbiophysical techniquesdisease phenotypedisease-causing mutationeducation researchexperimental studyinduced pluripotent stem cellinherited cardiomyopathylive cell imaginglive cell microscopymechanical forcemechanotransductionmedical schoolsmouse modelmutantnovel therapeuticsoptical trapsprogramsresearch and developmentsingle moleculeskillsstem cellstransmission process
项目摘要
Project Summary/Abstract
Familial cardiomyopathies are genetic heart diseases that involve ventricular remodeling and altered cardiac
contractility. These diseases are often caused by mutations in proteins within the sarcomere, the fundamental
contractile unit of cardiomyocytes. Mutations in non-sarcomeric proteins involved in mechanotransduction, the
process by which cells sense and respond to mechanical force, have also been implicated in cardiomyopathy
but have received considerably less attention. For instance, studies of human patients have identified
cardiomyopathy-associated mutations in metavinculin, the muscle-specific isoform of the ubiquitous
mechanotransducer vinculin, but how these mutations lead to the disease phenotype is not well-understood.
Structural studies have shown that the 68-amino acid insert that differentiates metavinculin from vinculin replaces
the first alpha-helix in the actin-binding vinculin tail domain. Although this alpha-helix does not directly bind actin,
the metavinculin insert results in drastic changes of the organization of actin filaments by metavinculin compared
to vinculin, suggesting an allosteric effect on actin binding. The proposed research will test the hypothesis that
the pathogenic mechanism of cardiomyopathy caused by mutations in metavinculin involves disruption of cardiac
mechanotransduction through impairment of the force-dependent binding of metavinculin to actin. Single-
molecule force measurements of metavinculin binding to actin will directly address whether force stabilizes
binding of metavinculin to actin, as has been previously demonstrated for vinculin, as well as the effect of
pathogenic mutations on this force-dependent binding. The cellular consequences of altered force dependence
of metavinculin-actin binding will be investigated in stem cell-derived cardiomyocytes that carry the disease-
causing mutations using live-cell imaging of sarcomerogenesis (the establishment of new sarcomeres) and
traction force microscopy. These experiments will also be carried out on metavinculin-null cardiomyocytes to
elucidate the role of metavinculin in sarcomerogenesis and cellular contractility. The training provided under this
fellowship will take place at the Washington University School of Medicine, a world leader in biomedical education
and research. The proposed research aligns with the strategic objectives of the NIH by addressing the normal
biological function of metavinculin and the pathobiological mechanism underlying the onset and progression of
cardiomyopathy caused by mutations in metavinculin. In addition, the proposed training plan will contribute to
the strategic objective of developing a scientific workforce capable of accomplishing the NIH’s mission by
supporting the development of research, teaching, and professional skills required for the PI to establish a
successful independent research program in the field of cardiac mechanobiology.
项目概要/摘要
家族性心肌病是遗传性心脏病,涉及心室重塑和心脏改变
这些疾病通常是由肌节内的蛋白质突变引起的,肌节是基本的蛋白质。
参与机械转导的非肌节蛋白的突变。
细胞感知和响应机械力的过程也与心肌病有关
但受到的关注却少得多,例如,对人类患者的研究发现。
心肌病相关的美维库林突变,这是普遍存在的肌肉特异性亚型
机械转导纽蛋白,但这些突变如何导致疾病表型尚不清楚。
结构研究表明,区分metavinculin 和vinculin 的68 个氨基酸插入物取代了
肌动蛋白结合纽蛋白尾部结构域中的第一个 α 螺旋 虽然该 α 螺旋不直接结合肌动蛋白,
与metavinculin相比,metavinculin插入导致肌动蛋白丝组织发生巨大变化
纽蛋白,表明对肌动蛋白结合的变构作用。拟议的研究将检验以下假设:
美维库林突变引起的心肌病的致病机制涉及心脏功能的破坏
通过破坏metavinculin 与肌动蛋白的力依赖性结合来进行机械转导。
Metavinculin 与肌动蛋白结合的分子力测量将直接解决力是否稳定的问题
Metavinculin 与肌动蛋白的结合(如之前针对纽蛋白所证明的那样),以及
这种力依赖性结合的致病突变。力依赖性的细胞后果。
将在携带疾病的干细胞衍生的心肌细胞中研究metavinculin-actin结合的情况-
使用肌节发生的活细胞成像(新肌节的建立)引起的突变和
这些实验还将在无美维库林的心肌细胞上进行。
阐明美维库林在肌瘤生成和细胞收缩性中的作用。
奖学金将在生物医学教育领域世界领先的华盛顿大学医学院进行
拟议的研究通过解决正常问题与 NIH 的战略目标保持一致。
美维库林的生物学功能以及疾病发生和进展的病理生物学机制
此外,所提出的训练计划将有助于由metavinculin突变引起的心肌病。
培养一支能够完成 NIH 使命的科学队伍的战略目标
支持 PI 建立所需的研究、教学和专业技能的发展
心脏机械生物学领域成功的独立研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samantha Kirstin Barrick其他文献
Samantha Kirstin Barrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samantha Kirstin Barrick', 18)}}的其他基金
Multiscale investigation of cardiomyopathy-associated mutations in metavinculin
美维库林心肌病相关突变的多尺度研究
- 批准号:
10558703 - 财政年份:2021
- 资助金额:
$ 0.25万 - 项目类别:
Multiscale investigation of cardiomyopathy-associated mutations in metavinculin
美维库林心肌病相关突变的多尺度研究
- 批准号:
10400576 - 财政年份:2021
- 资助金额:
$ 0.25万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
A novel role for Wasl signaling in the regulation of skeletal patterning
Wasl 信号在骨骼模式调节中的新作用
- 批准号:
10718448 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Role of C. elegans RAPGEF in Synapse Development at the Neuromuscular Junction
线虫 RAPGEF 在神经肌肉接头突触发育中的作用
- 批准号:
10676616 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别: