Activation of phospholipase C beta enzymes by G beta-gamma and corresponding regulation of downstream ion channels
G beta-gamma 激活磷脂酶 C beta 酶以及下游离子通道的相应调节
基本信息
- 批准号:10392874
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AgonistBindingBinding SitesBiologicalBioluminescenceCell membraneCellsComplexConflict (Psychology)CoupledCryoelectron MicroscopyElectron MicroscopyElectrophysiology (science)Energy TransferEnvironmentEnzymesFamilyFluorescenceFluorescence Resonance Energy TransferFluorescent ProbesFundingG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTP-Binding ProteinsGrantHeart RateHormonesImageIn VitroInflammationIntracellular MembranesInvestigationIon ChannelKnowledgeLabelLinkLipid BilayersLiposomesLocationLuciferasesMeasurableMeasurementMeasuresMembraneMolecular ConformationMutagenesisNeurotransmittersNociceptionNucleotidesPathway interactionsPhosphatidylinositol 4,5-DiphosphatePhospholipase CPhospholipases APhysiological ProcessesPhysiologyPlayPotassium ChannelProteinsRegulationReporterResearchResearch PersonnelResourcesRoleSecond Messenger SystemsSideSignal PathwaySignal TransductionSignaling MoleculeStimulusStructureSupervisionSystemTimeTimeLineTrainingUniversitiesWritingcareer developmentcryogenicsdesignexperienceexperimental studyextracellularfluorescence microscopefluorophoreimprovedinsightmeetingsmolecular modelingnanomolarphospholipase C betapost-doctoral trainingprogramsreceptorreconstitutionresponsesingle moleculestudent mentoringsymposiumvoltage
项目摘要
Project Summary
Cells respond to many extracellular stimuli via G protein coupled receptors (GPCR). Extracellular signaling
molecules bind GPCR’s and catalyze the release of intracellular membrane anchored G proteins, Ga and Gbg,
which act on downstream targets. Ion channels are a downstream target of numerous GPCR signaling cascades,
connecting the cellular response to these stimuli to membrane excitability. GPCR-dependent regulation of ion
channels plays an essential role in many physiological processes including nociception, regulation of heart rate,
and inflammation; therefore, it is essential to understand this regulation. Ion channels can be regulated by GPCR
signaling directly by G proteins or by G protein-regulated second messengers, including phosphatidylinositol-
4,5-bisphosphate (PIP2). PIP2 is degraded by the G protein-dependent b family of phospholipase C (PLC)
enzymes, which cleave PIP2 to produce IP3 and DAG. Numerous families of ion channels are regulated by PIP2
in a PLCb-dependent manner, including inwardly rectifying K+ (Kir) channels and voltage-dependent K+ channels.
PLCb enzymes are activated by both Gaq and Gbg, linking their function to both Gaq and Gai-coupled receptors.
While the regulation by Gaq is well-understood, much is unknown regarding the Gbg-dependent activation. In
order to understand the GPCR-dependent regulation of downstream ion channels and the associated
physiological processes, it is necessary to understand the G protein regulation of PLCb enzymes, which are the
key signaling intermediate. To this end, I propose to study the Gbg-dependent activation of PLCb enzymes via
the following two aims: (1) Investigate the minimal requirements for Gbg-dependent activation of PLCb enzymes
and the regulation of downstream ion channels using a cell-free reconstituted system, (2) Characterize the
interaction between Gbg and PLCb including localization of the binding site and characterization of the Gbg-
dependent conformational changes using cryogenic electron microscopy and bioluminescence resonance
energy transfer. Successful completion of these aims will directly connect PLCb regulation to its effect on ion
channels, expanding the knowledge of these signaling cascades. This project will be conducted under the
supervision of Dr. Roderick MacKinnon at Rockefeller University. Dr. MacKinnon has extensive experience
studying the function and regulation of ion channels as well as training postdoctoral researchers to succeed as
independent researchers. Together, the lab and Rockefeller University generate an environment with the
resources and intellectual input necessary for completing the proposed project. The accompanying training plan
includes a timeline describing the completion of the proposed experiments and allocates time for personal and
career development including frequent meetings with Dr. MacKinnon, attending conferences to present the
findings, mentoring students, and grant writing to acquire funding for an independent research program.
项目概要
细胞通过 G 蛋白偶联受体 (GPCR) 对许多细胞外刺激做出反应。
分子结合 GPCR 并催化细胞内膜锚定 G 蛋白、Ga 和 Gbg 的释放,
作用于下游靶标的离子通道是众多 GPCR 信号级联的下游靶标,
将细胞对这些刺激的反应与 GPCR 依赖性离子调节联系起来。
通道在许多生理过程中发挥着重要作用,包括伤害感受、心率调节、
和炎症;因此,有必要了解 GPCR 的调节作用。
直接通过 G 蛋白或 G 蛋白调节的第二信使(包括磷脂酰肌醇)发出信号
4,5-二磷酸 (PIP2) 被磷脂酶 C (PLC) 的 G 蛋白依赖性 b 家族降解。
酶,裂解 PIP2 产生 IP3 和 DAG 许多离子通道家族受 PIP2 调节。
以 PLCb 相关的方式,包括内向整流 K+ (Kir) 通道和电压相关的 K+ 通道。
PLCb 酶由 Gaq 和 Gbg 激活,将其功能与 Gaq 和 Gai 偶联受体联系起来。
虽然 Gaq 的调节已被充分理解,但关于 Gbg 依赖性激活的情况还有很多未知。
为了了解下游离子通道的 GPCR 依赖性调节以及相关的
生理过程中,有必要了解PLCb酶的G蛋白调节,它们是
为此,我建议通过研究 PLCb 酶的 Gbg 依赖性激活。
以下两个目标:(1)研究 PLCb 酶的 Gbg 依赖性激活的最低要求
以及使用无细胞重组系统调节下游离子通道,(2)表征
Gbg 和 PLCb 之间的相互作用,包括结合位点的定位和 Gbg- 的表征
使用低温电子显微镜和生物发光共振进行依赖性构象变化
成功完成这些目标将直接将 PLCb 调节与其对离子的影响联系起来。
通道,扩展这些信号级联的知识该项目将在
洛克菲勒大学罗德里克·麦金农 (Roderick MacKinnon) 博士的指导 麦金农 (Roderick MacKinnon) 博士拥有丰富的经验。
研究离子通道的功能和调节,并培养博士后研究人员以取得成功
该实验室和洛克菲勒大学共同创造了一个与独立研究人员合作的环境。
完成拟议项目所需的资源和智力投入。
包括描述拟议实验的完成情况的时间表,并为个人和个人分配时间
职业发展,包括与麦金农博士经常会面,参加会议以介绍
调查结果、指导学生以及撰写赠款以获得独立研究项目的资金。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
maria Falzone其他文献
maria Falzone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('maria Falzone', 18)}}的其他基金
Activation of phospholipase C beta enzymes by G beta-gamma and corresponding regulation of downstream ion channels
G beta-gamma 激活磷脂酶 C beta 酶以及下游离子通道的相应调节
- 批准号:
10228308 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
Activation of phospholipase C beta enzymes by G beta-gamma and corresponding regulation of downstream ion channels
G beta-gamma 激活磷脂酶 C beta 酶以及下游离子通道的相应调节
- 批准号:
10613895 - 财政年份:2021
- 资助金额:
$ 6.76万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Mapping brain-wide opioid actions by profiling neuronal activities and in vivo cellular target engagement
通过分析神经元活动和体内细胞靶标参与来绘制全脑阿片类药物作用
- 批准号:
10775623 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Decoding the functional pleiotropy of IL-20Rβ ligands in inflammation and tumorigenesis
解码 IL-20Rβ 配体在炎症和肿瘤发生中的功能多效性
- 批准号:
10350447 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Neurosteroid and Cholesterol Binding to Integral Membrane Proteins
神经类固醇和胆固醇与整合膜蛋白的结合
- 批准号:
10623887 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别: