UAB Precision Nutrition Clinical Center
UAB精准营养临床中心
基本信息
- 批准号:10384253
- 负责人:
- 金额:$ 55.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-10 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAfrican American populationAlabamaAlgorithmsArtificial IntelligenceBehaviorBehavioralBioinformaticsBiopsyBlood PressureBody CompositionCalorimetryCardiovascular DiseasesChronic DiseaseClinical ResearchClinical SciencesCognitiveComplexConsumptionCrossover DesignDataData AnalysesDatabasesDiabetes MellitusDietDietary InterventionDietary PracticesDomicilesEnergy MetabolismEnvironmentEnvironmental ExposureEnvironmental Risk FactorExerciseFatty acid glycerol estersFoundationsGeneticGenomicsGlucoseGoalsHealthHealth PromotionHealth SurveysHourHypertensionIndividualInfrastructureInterventionLeadLettersMachine LearningMacronutrients NutritionMaintenanceMalignant NeoplasmsMeasurementMeasuresMedicineMetabolicMetabolismMetadataMethodsModelingMovementMuscleNon-Insulin-Dependent Diabetes MellitusNutrientObesityObservational StudyOutcomeOutcome AssessmentParticipantPersonal SatisfactionPersonsPhenotypePhysical activityPhysiologicalPopulationPopulation HeterogeneityPositioning AttributePrecision HealthPsychosocial FactorRandomizedResearchResourcesSiteSleepStandardizationTestingTranslational ResearchUniversitiesbasecardiorespiratory fitnessclinical centerdata repositorydesigndietarydoubly-labeled waterexperiencefeedingfitnessgenetic makeupindividual variationmathematical modelmembermetabolomicsmicrobiomemultimodal datanutritionprecision nutritionpredicting responsepredictive toolspreventrecruitresponse
项目摘要
ABSTRACT
The reasons for individual variability in the physiologic response to dietary patterns are not well understood but
hamper efforts to provide optimum diets to our population. There is an urgent need to understand the complex
interaction of demographic, genetic, metabolic, behavioral, psychosocial, and environmental factors that affect
the responses to dietary patterns in order to prevent and treat nutrition-related chronic diseases. The field of
“precision nutrition” holds great promise for elucidating these interactions to eventually predict the optimal diet
for an individual or groups of individuals. The overall objective of this application is to demonstrate that the
University of Alabama at Birmingham (UAB) is uniquely positioned to join the consortium as a Nutrition for
Precision Health Clinical Center (RFA-RM-21-005). The study team will collect a wide range of physiological and
metabolic data from individuals in response to free-living (module 1) and controlled diets (modules 2 & 3), that
will be used in analyses to determine potential predictors of response to diet. Sophisticated data methods
(artificial intelligence, machine learning, mathematical modelling) will then be employed by the study group to
identify the comprehensive phenotypes needed for individualizing diet prescriptions. We aim to accomplish the
following three specific aims: Specific Aim 1 (module 1): Conduct an observational study of 2000 free-living
individuals consuming their usual diet for 14 days. The physiologic responses to a standardized test meal
challenge will be assessed while they are consuming their usual diet. Specific Aim 2 (module 2): Conduct a
free-living controlled feeding study in 400 subjects fed three isocaloric diets varying in macronutrient
composition at maintenance energy requirements. Diets are designed to elicit a wide range of responses
among participants. The physiologic responses to standardized test meals and diet-specific meals will be
measured at the end of each 14-day diet period. We will also collect measures of 24-hr glucose, 24-hr blood
pressure, 24-hr physical activity, cardiorespiratory fitness, and sleep during each diet period. Specific Aim 3
(module 3): Conduct a domiciled controlled feeding study in 150 subjects of three isocaloric diets (same
diets as in aim #1) fed at maintenance energy requirements. In addition to module 2 outcomes, assessments
including room calorimetry, doubly labelled water, cardiorespiratory fitness, and muscle and fat biopsies will be
completed in module 3 participants while they are domiciled in cottages at the Lakeshore Foundation Campus
near UAB. Achieving these aims will create a database that allows sophisticated data analysis (e.g., AI, machine
learning) to develop algorithms to match people to optimum diets. UAB, with access to >16,000 All of Us
participants in Birmingham, outstanding facilities for conducting diet interventions, and an outstanding
research team, can be a valued member of the Nutrition for Precision Health Consortium.
抽象的
对饮食模式的生理反应存在个体差异的原因尚不清楚,但
迫切需要了解这一复杂的情况。
影响人口、遗传、代谢、行为、社会心理和环境因素的相互作用
对饮食模式的反应,以预防和治疗与营养相关的慢性疾病。
“精准营养”有望阐明这些相互作用,最终预测最佳饮食
对于个人或个人团体来说,此应用程序的总体目标是证明
阿拉巴马大学伯明翰分校 (UAB) 拥有独特的优势,能够作为营养学联盟加入该联盟
Precision Health临床中心(RFA-RM-21-005)研究小组将收集广泛的生理和心理数据。
来自个体对自由生活(模块 1)和控制饮食(模块 2 和 3)的代谢数据,
将用于分析以确定对饮食反应的潜在预测因素。
(人工智能、机器学习、数学建模)将被研究小组用来
确定个性化饮食处方所需的综合表型,我们的目标是实现这一目标。
以下三个具体目标: 具体目标 1(模块 1):对 2000 名自由生活者进行观察性研究
连续 14 天食用常规饮食的个体对标准化测试餐的生理反应。
将在他们日常饮食时评估挑战。 具体目标 2(模块 2):进行一次挑战。
对 400 名受试者进行自由生活控制喂养研究,这些受试者喂食三种常量营养素不同的等热量饮食
饮食的组成旨在引起广泛的反应。
参与者对标准化测试餐和特定饮食餐的生理反应将是
我们还将收集 24 小时血糖、24 小时血液的测量结果。
每个节食期间的压力、24 小时体力活动、心肺健康和睡眠。
(模块 3):对 150 名接受三种等热量饮食(相同
目标 #1 中的饮食)满足维持能量需求 除了模块 2 的结果外,还进行评估。
包括室内量热法、双标记水、心肺健康以及肌肉和脂肪活检
参加者在湖岸基金会校区的小屋中完成第 3 单元的学习
实现这些目标将创建一个允许复杂数据分析的数据库(例如人工智能、机器)
学习)开发算法来将人们与最佳饮食相匹配,并可访问超过 16,000 名我们所有人。
伯明翰的参与者、进行饮食干预的出色设施以及出色的
研究团队,可以成为精准健康营养联盟的重要成员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARBARA A GOWER其他文献
BARBARA A GOWER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARBARA A GOWER', 18)}}的其他基金
Obesity risk in African American women is determined by a diet-by-phenotype interaction
非裔美国女性的肥胖风险是由饮食与表型的相互作用决定的
- 批准号:
9769722 - 财政年份:2018
- 资助金额:
$ 55.77万 - 项目类别:
Obesity risk in African American women is determined by a diet-by-phenotype interaction
非裔美国女性的肥胖风险是由饮食与表型的相互作用决定的
- 批准号:
9914264 - 财政年份:2018
- 资助金额:
$ 55.77万 - 项目类别:
Obesity risk in African American women is determined by a diet-by-phenotype interaction
非裔美国女性的肥胖风险是由饮食与表型的相互作用决定的
- 批准号:
10397052 - 财政年份:2018
- 资助金额:
$ 55.77万 - 项目类别:
Race - adiposity interactions regulate mechanisms determining insulin sensitivity
种族-肥胖相互作用调节决定胰岛素敏感性的机制
- 批准号:
8892171 - 财政年份:2013
- 资助金额:
$ 55.77万 - 项目类别:
Race - adiposity interactions regulate mechanisms determining insulin sensitivity
种族-肥胖相互作用调节决定胰岛素敏感性的机制
- 批准号:
9115157 - 财政年份:2013
- 资助金额:
$ 55.77万 - 项目类别:
Race - adiposity interactions regulate mechanisms determining insulin sensitivity
种族-肥胖相互作用调节决定胰岛素敏感性的机制
- 批准号:
8504840 - 财政年份:2013
- 资助金额:
$ 55.77万 - 项目类别:
Race - adiposity interactions regulate mechanisms determining insulin sensitivity
种族-肥胖相互作用调节决定胰岛素敏感性的机制
- 批准号:
8737888 - 财政年份:2013
- 资助金额:
$ 55.77万 - 项目类别:
UAB Pre-Doctoral Training Program in Obesity-Related Research
UAB 肥胖相关研究博士前培训项目
- 批准号:
10682544 - 财政年份:2010
- 资助金额:
$ 55.77万 - 项目类别:
UAB Pre-Doctoral Training Program in Obesity-Related Research
UAB 肥胖相关研究博士前培训项目
- 批准号:
10024505 - 财政年份:2010
- 资助金额:
$ 55.77万 - 项目类别:
相似海外基金
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
- 批准号:
10735151 - 财政年份:2023
- 资助金额:
$ 55.77万 - 项目类别:
Identification of Trichomonas vaginalis resistance targets to inform future drug development
确定阴道毛滴虫耐药靶标,为未来药物开发提供信息
- 批准号:
10462312 - 财政年份:2023
- 资助金额:
$ 55.77万 - 项目类别:
Predictors of Youth-Onset Type 2 Diabetes: UAB Clinical Center
青年发病 2 型糖尿病的预测因子:UAB 临床中心
- 批准号:
10582927 - 财政年份:2023
- 资助金额:
$ 55.77万 - 项目类别:
Investigating microbiota of the gut-brain axis and the impact of cocaine
研究肠脑轴的微生物群和可卡因的影响
- 批准号:
10625082 - 财政年份:2023
- 资助金额:
$ 55.77万 - 项目类别:
African American (AA) Communities Speak: Partnering with AAs in the North and South to Train Palliative Care Clinicians to Address Interpersonal and Systemic Racism and Provide Culturally Aligned Care
非裔美国人 (AA) 社区发言:与北部和南部的 AA 合作,培训姑息治疗临床医生,以解决人际和系统性种族主义并提供文化一致的护理
- 批准号:
10734272 - 财政年份:2023
- 资助金额:
$ 55.77万 - 项目类别: