A Computationally Efficient Approach to Predict Population Risk with Machine Learning
通过机器学习预测人口风险的高效计算方法
基本信息
- 批准号:10379613
- 负责人:
- 金额:$ 24.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-25 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescentApplied ResearchCarcinogensChemicalsCollaborationsCommunity HealthComplexComputer ModelsComputer SimulationCustomDataData SetData Storage and RetrievalDepositionDevicesEffectivenessElectronic Nicotine Delivery SystemsElectronic cigaretteEncapsulatedEnvironmental HealthFruitHealthHumanIndividualIngestionInternetLinkMachine LearningMarketingMedicalModelingOnline SystemsPhasePhysiologicalPhysiologyPopulationPopulation StudyPostdoctoral FellowProbabilityProcessResearch PersonnelRiskRisk AssessmentSafetySmall Business Innovation Research GrantSystemTechniquesTestingTimeToxic effectToxinTrainingValidationVisualizationbasecancer riskcomputational toxicologycomputer frameworkcostdesigndosimetryelectronic cigarette useexperiencehealth datainnovationlarge datasetsmachine learning algorithmmachine learning modelmultilayer perceptronnicotine exposurenovelopen sourcesimulationsmoking cessationtooltoxicantusabilityvaping
项目摘要
Abstract
The growing use of e-cigarettes and vaping devices in recent years is a concern for the
health community. While the safety has not yet been fully characterized, these devices are linked
to smoking cessation efforts, targeted marketing campaigns towards adolescents, and additives,
such as fruit flavors, that promote use. Experimental data has been collected to investigate
toxicity, lethality, and risk for cancer. However, the gaps in this type of data and the difficulty
collecting large datasets leads to challenges with risk assessment calculations. Computational
modeling to predict chemical and toxin distribution, deposition, and dosimetry has been
successfully demonstrated; however, the computational requirements are prohibitive for large
population studies. We hypothesize that replacing expensive computational models with a
machine learning model will produce accurate risk assessment for a low computational cost and
that this process can be generalized for other environmental health data.
This project is a close collaboration between Kitware, Inc. and Applied Research
Associates, Inc. (ARA). The Kitware team has extensive experience developing computational
physiology models for use in simulation, storage, curation, and analysis of large dataset for
medical and health related analysis, and machine learning techniques. We have developed an
open source platform, Girder, for creating customized workflows related to large datasets and
machine learning analysis. ARA has extensive experience in computational modeling and toxicity
analysis for the deposition and dosimetry of toxins and chemicals and the mechanisms associated
with e-cigarettes and vaping devices. In this project, we propose combining the expertise of the
teams at Kitware and ARA to develop customized workflow for large data set storage and
incorporating and analyzing machine learning techniques and results, respectively. We will
demonstrate this effectiveness of the workflow using synthetic data generated using a
computational framework of models. The specific aims of the Phase I project are: (1) Generate
large datasets using high-fidelity computational modeling approaches; (2) Create an optimized
workflow for ingesting large environmental health datasets for use in machine learning to calculate
risk assessment; and (3) Develop a machine learning model to replace first principles models and
predict risk assessment for environmental health.
抽象的
近年来,电子烟和电子烟设备的使用日益增多,引起了人们的担忧
健康社区。虽然安全性尚未得到充分表征,但这些设备是相互关联的
戒烟工作、针对青少年的有针对性的营销活动和添加剂,
例如促进使用的水果口味。已收集实验数据进行调查
毒性、致死率和癌症风险。但此类数据的空白和难度
收集大型数据集会给风险评估计算带来挑战。计算型
预测化学和毒素分布、沉积和剂量测定的模型已被建立
成功展示;然而,对于大型的计算要求是令人望而却步的
人口研究。我们假设用一个替代昂贵的计算模型
机器学习模型将以较低的计算成本产生准确的风险评估
该过程可以推广到其他环境健康数据。
该项目是 Kitware, Inc. 和 Applied Research 之间的密切合作
联营公司(ARA)。 Kitware 团队拥有丰富的计算开发经验
用于模拟、存储、管理和分析大型数据集的生理学模型
医疗和健康相关分析以及机器学习技术。我们开发了一个
开源平台 Girder,用于创建与大型数据集和数据相关的定制工作流程
机器学习分析。 ARA 在计算建模和毒性方面拥有丰富的经验
毒素和化学物质的沉积和剂量测定及其相关机制的分析
与电子烟和电子烟设备。在这个项目中,我们建议结合各方的专业知识
Kitware 和 ARA 的团队为大型数据集存储和开发定制工作流程
分别整合和分析机器学习技术和结果。我们将
使用使用生成的合成数据证明工作流程的有效性
模型的计算框架。第一期项目的具体目标是:(1)生成
使用高保真计算建模方法的大型数据集; (2) 创建优化
用于摄取大型环境健康数据集以用于机器学习计算的工作流程
风险评估; (3) 开发机器学习模型来替代第一原理模型
预测环境健康的风险评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Clipp其他文献
Rachel Clipp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Clipp', 18)}}的其他基金
Optimizing the Pulse Physiology Engine to Meet Medical Simulation Community Needs
优化脉冲生理学引擎以满足医学模拟社区的需求
- 批准号:
10609281 - 财政年份:2021
- 资助金额:
$ 24.99万 - 项目类别:
Surgical Simulator for Improving Skill Proficiency and Resilience
用于提高技能熟练程度和恢复能力的手术模拟器
- 批准号:
10276881 - 财政年份:2021
- 资助金额:
$ 24.99万 - 项目类别:
Surgical Simulator for Improving Skill Proficiency and Resilience
用于提高技能熟练程度和恢复能力的手术模拟器
- 批准号:
10668406 - 财政年份:2021
- 资助金额:
$ 24.99万 - 项目类别:
Surgical Simulator for Improving Skill Proficiency and Resilience
用于提高技能熟练程度和恢复能力的手术模拟器
- 批准号:
10468965 - 财政年份:2021
- 资助金额:
$ 24.99万 - 项目类别:
相似国自然基金
青少年焦虑的预测和干预:基于跨通道恐惧泛化视角
- 批准号:32300928
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
推拿“舒筋调骨”干预青少年脊柱侧弯“肌肉力学-椎间载荷”平衡机制研究
- 批准号:82374607
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于数字表型青少年自杀行为转化风险测度及虚拟现实矫正干预研究
- 批准号:72304244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
- 批准号:82373595
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
视屏活动和CaMKII m6A甲基化修饰影响青少年抑郁症状的纵向研究
- 批准号:82304168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FORUM ON MEDICAL AND PUBLIC HEALTH PREPAREDNESS FOR DISASTERS AND EMERGENCIES AND ACTION COLLABORATIVE ON DISASTERS/PUBLIC HEALTH EMERGENCY RESEARCH
灾害和紧急情况医疗和公共卫生防备论坛以及灾害/公共卫生紧急情况研究行动合作
- 批准号:
10937101 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Screen Smart: Using Digital Health to Improve HIV Screening and Prevention for Adolescents in the Emergency Department
智能屏幕:利用数字健康改善急诊科青少年的艾滋病毒筛查和预防
- 批准号:
10711679 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Development and Production of Standardized Reference Diets for Zebrafish Research
斑马鱼研究标准化参考饲料的开发和生产
- 批准号:
10823702 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
HIVR4P 2023, the 5th HIV Research for Prevention Conference, Lima, Peru, and virtually, 22-26 October 2023
HIVR4P 2023,第五届艾滋病毒预防研究会议,秘鲁利马,虚拟会议,2023 年 10 月 22-26 日
- 批准号:
10617933 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别: