A novel family of conserved glyoxal toxicity response proteins.
一个新的保守乙二醛毒性反应蛋白家族。
基本信息
- 批准号:10365682
- 负责人:
- 金额:$ 44.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAmino AcidsAnabolismAntibioticsAreaArginineAssimilationsAtherosclerosisBacteriaBindingBinding ProteinsBiological AssayCalcium-Binding ProteinsCellsCellular StressCellular StructuresComplexCrystallographyCysteineDataDiabetes MellitusDiseaseDrug Metabolic DetoxicationEnzymesEukaryotaExcisionFamilyFluorescence Resonance Energy TransferGene Expression RegulationGenerationsGenesGeneticGlycolysisGlyoxalGoalsGrantGrowthHealthHeart DiseasesHemeHeme IronHistidineHomeostasisHumanHypertensionImageIronKnowledgeLifeLightLiteratureLongevityLysineMalignant NeoplasmsMapsMass Spectrum AnalysisMembraneMetabolicMetabolismMethodsMicroscopyMixed Function OxygenasesModificationMolecularMutationNamesNatureNerve DegenerationNeuronsNuclear Magnetic ResonanceNutrientOperonOrganismOxidative StressPathway interactionsPatternPlanet EarthPlayPolysaccharidesPredispositionProcessProteinsPseudomonasPseudomonas aeruginosaPyruvaldehydeQuinolonesRegulationResearchResolutionRoleSideSignal PathwaySignal TransductionStressStructureSystemTechniquesTimeToxic effectToxinVesicleVirulence FactorsWorkantimicrobialbiological adaptation to stresscell envelopeexperimental studyheme-binding proteinhuman diseasemutantnervous system disordernovelnovel antibiotic classpathogenic bacteriaprotein functionquorum sensingremediationresponsestemtranscriptome sequencinguptakevirtual
项目摘要
Advanced Glycan End Products (AGEs) are toxic and highly reactive dicarbonyl molecules
produced by most life on earth from routine metabolic processes. As such, conserved and
dedicated detoxifying systems have emerged for dicarbonyl removal. Owing to their importance,
these removal systems are required to maintain longevity, thereby emphasizing the importance
of dicarbonyl detoxification in maintaining health. One of the most prominent dicarbonyl species
is glyoxal, which is predominantly produced as a byproduct of glycolysis. Glyoxal acts by
mounting specific attacks on certain amino acids, namely arginines, cysteines, histidines and
lysines in key proteins, thereby adversely altering protein function. In humans, these
modifications can result in many diseased states, including: cancer, diabetes, nervous system
disorders, heart disease, hypertension, atherosclerosis and aging. Unfortunately, although
dicarbonyl stress-related toxicity is now regarded as important as oxidative stress, knowledge
about how cells are able to detect and respond to glyoxal buildup is, by comparison, severely
lacking. Our lab has discovered a novel class of Antibiotic Monooxygenase (ABM) domains that
we hypothesize sense and respond to glyoxal and related dicarbonyls from bacteria to humans.
This project proposes to elucidate the mechanism by which one of these ABM domains, we
named Glyoxal-ABM Domain 1 (GAD1) responds to glyoxal in the bacterial pathogen
Pseudomonas aeruginosa. We have thus far shown that GAD1 from P. aeruginosa, which is co-
transcribed with the glyoxal detoxification enzyme GloA2, binds heme directly and is also
covalently modified by glyoxal on a conserved arginine residue (Arg49). We hypothesize that
GAD1 and its many homologs are specifically modified on conserved residues, which, in turn,
signals to switch cellular metabolic flux away from glycolysis other pathways unable to produce
the glyoxal toxin. Our studies here will Aim to (1) map GAD1 regulation, (2) determine its cellular
distribution and its interactome and (3) solve the structures of its apo and holo forms, and in
complex with interacting partners in P. aeruginosa. Studying GAD1 in P. aeruginosa is expected
to reveal novel pathways that have potential as new antimicrobial targets, and at the same time
advance our basic understanding of glyoxal toxicity sensing in humans and other multicellular
organisms.
高级聚糖终产物 (AGE) 是有毒且高反应性的二羰基分子
地球上大多数生命通过常规代谢过程产生。因此,保守且
已经出现了用于去除二羰基的专用解毒系统。由于它们的重要性,
这些清除系统需要保持较长的使用寿命,从而强调了其重要性
二羰基解毒在维持健康方面的作用。最重要的二羰基物种之一
是乙二醛,其主要作为糖酵解的副产物产生。乙二醛的作用是
对某些氨基酸(即精氨酸、半胱氨酸、组氨酸和
关键蛋白质中的赖氨酸,从而对蛋白质功能产生不利改变。在人类中,这些
修饰可能导致许多疾病状态,包括:癌症、糖尿病、神经系统
疾病、心脏病、高血压、动脉粥样硬化和衰老。不幸的是,虽然
二羰基应激相关的毒性现在被认为与氧化应激一样重要,知识
相比之下,关于细胞如何能够检测和响应乙二醛的积累是非常重要的
缺乏。我们的实验室发现了一类新型抗生素单加氧酶 (ABM) 结构域,
我们假设从细菌到人类对乙二醛和相关二羰基的感知和反应。
该项目旨在阐明我们通过这些 ABM 领域之一的机制
名为乙二醛-ABM 结构域 1 (GAD1) 的细菌病原体中的乙二醛反应
铜绿假单胞菌。到目前为止,我们已经证明来自铜绿假单胞菌的 GAD1,它是共同的
用乙二醛解毒酶 GloA2 转录,直接结合血红素,也
乙二醛在保守的精氨酸残基 (Arg49) 上进行共价修饰。我们假设
GAD1 及其许多同源物在保守残基上进行了专门修饰,反过来,
将细胞代谢通量从糖酵解转变为其他途径无法产生的信号
乙二醛毒素。我们的研究旨在 (1) 绘制 GAD1 调控图谱,(2) 确定其细胞
分布及其相互作用组,(3) 解析其 apo 和全息形式的结构,并在
与铜绿假单胞菌中相互作用的伙伴的复合物。预计研究铜绿假单胞菌中的 GAD1
揭示有潜力作为新抗菌靶点的新途径,同时
增进我们对人类和其他多细胞乙二醛毒性传感的基本了解
有机体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW T ULIJASZ其他文献
ANDREW T ULIJASZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW T ULIJASZ', 18)}}的其他基金
A novel family of conserved glyoxal toxicity response proteins.
一个新的保守乙二醛毒性反应蛋白家族。
- 批准号:
10555214 - 财政年份:2022
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10216972 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10444904 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10666412 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10001426 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
A Regulatory Cascade that Controls Pneumococcal Capsule Biosynthesis
控制肺炎球菌胶囊生物合成的级联监管
- 批准号:
10666412 - 财政年份:2019
- 资助金额:
$ 44.59万 - 项目类别:
相似国自然基金
BCKDK介导支链氨基酸代谢异常在恶病质骨骼肌蛋白合成的作用及机制
- 批准号:81872494
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
高氨基酸代谢介导核苷酸合成关键酶ATIC的表观修饰在肠息肉发生中的机制研究
- 批准号:81870456
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
瘤胃细菌蛋氨酸和赖氨酸的合成与分解代谢路径及其调控机理
- 批准号:31772632
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
DTD1在小鼠学习与记忆能力中的作用和机制研究
- 批准号:31670789
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
红景天甙生物合成依赖的酪氨酸代谢支路途径研究
- 批准号:81660628
- 批准年份:2016
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Sestrins-mediated integration of leucine and exercise benefits for mitochondrial homeostasis
Sestrins介导的亮氨酸整合和运动对线粒体稳态的益处
- 批准号:
10734830 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
The regulation of cancer and aging by methionine
蛋氨酸对癌症和衰老的调节
- 批准号:
10750559 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
Coordinated mechanisms to rescue bioenergetics and sarcopenia in aging
拯救衰老过程中生物能学和肌肉减少症的协调机制
- 批准号:
10672292 - 财政年份:2022
- 资助金额:
$ 44.59万 - 项目类别:
A novel family of conserved glyoxal toxicity response proteins.
一个新的保守乙二醛毒性反应蛋白家族。
- 批准号:
10555214 - 财政年份:2022
- 资助金额:
$ 44.59万 - 项目类别:
Control of RNA methylation by growth signals through the mTORC1 pathway
通过 mTORC1 途径通过生长信号控制 RNA 甲基化
- 批准号:
10469579 - 财政年份:2021
- 资助金额:
$ 44.59万 - 项目类别: