Cryo-electron tomography to determine crosstalk mechanisms of calcium channels in cardiomyocytes
冷冻电子断层扫描确定心肌细胞钙通道的串扰机制
基本信息
- 批准号:10352085
- 负责人:
- 金额:$ 12.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdvisory CommitteesArrhythmiaAwardBindingBiologyCalciumCalcium ChannelCalcium ionCalmodulinCardiacCardiac MyocytesCardiovascular DiseasesCardiovascular systemCatecholaminergic Polymorphic Ventricular TachycardiaCell surfaceCellsClustered Regularly Interspaced Short Palindromic RepeatsCommittee MembersCryo-electron tomographyCryoelectron MicroscopyDefectDevelopmentDiseaseDisease modelElectric StimulationElectron MicroscopyEnsureEnvironmentExerciseExtravasationFacultyFunctional disorderGoalsGrantHealthHeartHeart ArrestHeart ContractilitiesHeart RateHeart failureHumanImageImaging TechniquesIn SituInstitutesIonsLaboratoriesLeadMeasuresMediatingMentorsMethodsMolecularMolecular ConformationMusMuscle CellsMuscle relaxation phaseMutationPathologicPatientsPersonsPhasePhysical activityPositioning AttributePost-Translational Protein ProcessingProcessProtein ConformationProteinsQuality of lifeRecordsRefractoryRegulationResearchResearch Project GrantsResearch ProposalsResolutionResourcesRestRiskRoleRyR2Sarcoplasmic ReticulumStructureTestingTherapeuticTherapeutic AgentsTimeTrainingTraining SupportUnited States National Institutes of HealthWorkadrenergic stressbeta-adrenergic receptorcardiovascular imagingcareercareer developmentclinically relevantexperimental studygenome editingheart cellhigh resolution imagingimaging approachimaging studyimprovedinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinsightlight microscopymillisecondmutantnanometernovelnovel strategiesprogramsprotein complexsmall moleculesmall molecule therapeuticsstructural biologysuccesssudden cardiac deathtemporal measurementtime usetomographytriadin
项目摘要
PROJECT SUMMARY/ABSTRACT
Heart cells must precisely control the flow of calcium ions (Ca) within the cell to maintain a healthy heartbeat.
Contraction is initiated when L-type Ca channels (LTCCs) on the cell surface open and induce sarcoplasmic
reticulum (SR) Ca channels (RyR2) to release more Ca. This process is known as Ca-induced Ca release
(CICR). People with Ca handling dysfunctions develop arrhythmia and are at risk for sudden cardiac death and
heart failure. Yet, a detailed molecular and structural basis for CICR regulation in health and its dysregulation in
disease remains a mystery. The goal of this project is to use cutting-edge developments in cryo-electron
tomography (Cryo-ET), correlative light and electron microscopy, human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs) and murine disease models, and CRISPR genome editing to determine the
structures and organization of CICR proteins in multiple clinically relevant states. In the mentored phase of this
award, the project will determine the localization of CICR proteins, the complexes they form, and their
conformational state, both at rest and during β-adrenergic receptor stimulation. In the independent phase of the
award, the project will use time-resolved imaging to capture short-lived but functionally important assemblies to
dissect CICR refractoriness. At both stages of the project, healthy cells will be compared to disease models. This
work will provide unprecedented insight into the molecular mechanisms that regulate CICR and how mutations
in CICR proteins lead to arrhythmia. By connecting structural and cardiovascular biology, this project will provide
a proof-of-concept for a new approach to study diverse cardiovascular processes and aid the development of
precise therapeutics. It will also give Dr. Woldeyes the training and expertise necessary to start an academic
career with a focus on using Cryo-ET for cardiovascular imaging.
With the training support of this award and guidance from her mentors, her advisory committee members, and
collaborators, Dr. Woldeyes will be well positioned to establish her independent research career. Dr. Woldeyes’
long-term goal is to dissect the mechanisms of cardiovascular disease at high spatial and temporal resolution.
She is jointly mentored by Dr. Wah Chiu, a leader in the field of cryo-electron microscopy/tomography and Dr.
Joseph Wu, a leader in the use of patient-derived iPSC-CMs to study cardiovascular diseases. Both have
excellent track records in mentoring and transitioning trainees to independent academic careers. Their labs are
an ideal environment for conducting the proposed experiments. With the resources and faculty available at the
Cardiovascular Institute, SLAC National Laboratory, Stanford, and the MOSAIC UE5 program, she will have the
training, support and intellectual input needed to ensure the success of this research project, enhance her career
development, and prepare her for the transition to a successful independent research career.
项目概要/摘要
心脏细胞必须精确控制细胞内钙离子 (Ca) 的流动,以维持健康的心跳。
当细胞表面的 L 型 Ca 通道 (LTCC) 打开并诱导肌浆收缩时,就会启动收缩。
网状 (SR) Ca 通道 (RyR2) 释放更多 Ca,此过程称为 Ca 诱导的 Ca 释放。
(CICR) 患有钙处理功能障碍的人会出现心律失常,并有心源性猝死的风险。
然而,健康中 CICR 调节及其失调的详细分子和结构基础。
该项目的目标是利用冷冻电子技术的尖端发展。
断层扫描 (Cryo-ET)、相关光学和电子显微镜、人类诱导多能干细胞衍生
心肌细胞 (hiPSC-CM) 和小鼠疾病模型,以及 CRISPR 基因组编辑以确定
CICR 蛋白在多种临床相关状态下的结构和组织。
该项目将确定 CICR 蛋白的定位、它们形成的复合物以及它们的作用
构象状态,无论是在休息时还是在β-肾上腺素受体刺激期间。
该项目将使用时间分辨成像来捕获短暂但功能重要的组件
剖析 CICR 不应性 在项目的两个阶段,健康细胞将与疾病模型进行比较。
这项工作将为调控 CICR 的分子机制以及突变如何发挥作用提供前所未有的见解。
通过连接结构生物学和心血管生物学,该项目将提供 CICR 蛋白导致心律失常的研究。
研究不同心血管过程并帮助开发新方法的概念验证
它还将为 Woldeyes 博士提供开展学术所需的培训和专业知识。
职业生涯的重点是使用 Cryo-ET 进行心血管成像。
在该奖项的培训支持和导师、顾问委员会成员的指导下,
合作者,Woldeyes 博士将有能力建立她的独立研究生涯。
长期目标是以高空间和时间分辨率剖析心血管疾病的机制。
她由冷冻电子显微镜/断层扫描领域的领军人物Wah Chiu博士和Dr.
Joseph Wu,使用源自患者的 iPSC-CM 研究心血管疾病的领导者。
他们的实验室在指导和引导学员走向独立学术生涯方面有着出色的记录。
拥有进行拟议实验的理想环境。
心血管研究所、斯坦福SLAC国家实验室和MOSAIC UE5项目,她将拥有
确保该研究项目成功、提升她的职业生涯所需的培训、支持和智力投入
发展,并为她过渡到成功的独立研究生涯做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rahel Asfaw Woldeyes其他文献
Rahel Asfaw Woldeyes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rahel Asfaw Woldeyes', 18)}}的其他基金
Cryo-electron tomography to determine crosstalk mechanisms of calcium channels in cardiomyocytes
冷冻电子断层扫描确定心肌细胞钙通道的串扰机制
- 批准号:
10545094 - 财政年份:2022
- 资助金额:
$ 12.58万 - 项目类别:
相似海外基金
Tachycardia-induced Metabolic Remodeling Drives Cardiac Dysfunction
心动过速引起的代谢重塑导致心脏功能障碍
- 批准号:
10738875 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Improving the Detection of Hypertrophic Cardiomyopathy Using Machine Learning Applied to Electronic Health Record Data
利用机器学习应用于电子健康记录数据来改善肥厚型心肌病的检测
- 批准号:
10740278 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Electrocardiogram-based deep learning and decision analysis to improve atrial fibrillation risk estimation
基于心电图的深度学习和决策分析改善房颤风险评估
- 批准号:
10722762 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
The Effects of Estrogen on Cardiac Arrhythmic Propensity
雌激素对心律失常倾向的影响
- 批准号:
10731400 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Mechanistic refinement of non-invasive autonomic neuromodulation for cardiac arrhythmia
非侵入性自主神经调节治疗心律失常的机制完善
- 批准号:
10525948 - 财政年份:2022
- 资助金额:
$ 12.58万 - 项目类别: