Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
基本信息
- 批准号:10351379
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3&apos Splice Site5&apos Splice SiteATP HydrolysisActive SitesAddressAlternative SplicingBiochemicalBiophysicsC-terminalCardiomyopathiesCatalysisCatalytic DomainCell physiologyChargeCodeComplexDNA Sequence AlterationDataDevelopmentDilated CardiomyopathyDiseaseDockingDysmyelopoietic SyndromesEnvironmentEnzymatic BiochemistryEventExonsFluorescence MicroscopyFluorescence Resonance Energy TransferGene ExpressionGenesGeneticGoalsHealthHela CellsHumanImmobilizationImmunoglobulin Joining RegionImpairmentInstitutionIntronsInvestigationKineticsKnowledgeLabelLaboratoriesLeadLigationMacromolecular ComplexesMalignant NeoplasmsMediatingMessenger RNAMethodsMicroscopyMolecularMolecular BiologyMolecular ChaperonesMolecular ConformationMolecular MachinesMonitorMutateMutationNuclearNuclear ExtractNucleotidesOrganismParkinson DiseaseProcessProgeriaProteinsRNARNA ProcessingRNA SplicingRNA, Messenger, SplicingReactionReporterReportingResearchResolutionRoleRunningSiteSmall Nuclear RNASpecificitySpectrum AnalysisSpliceosome Assembly PathwaySpliceosomesStructureSubstrate InteractionSubstrate SpecificitySurfaceSyndromeTestingTrainingTranscription ProcessU5 small nuclear RNAUBE2D2 geneUntranslated RNAVariantWorkYeastsbasebiophysical techniquescareercyanine dye 5early onsetfluorophorehelicasehuman diseasehuman errorinsightmRNA Precursorpost-doctoral trainingpreferenceprotein complexreal time monitoringrecruitsingle moleculetherapy development
项目摘要
Project Summary
In eukaryotic organisms, transcribed RNA is processed from precursor messenger RNA (pre-mRNA) into
mature RNA in a process known as splicing. During this RNA processing mechanism, the non-coding regions of
pre-mRNA are removed, and the flanking regions are joined by a large molecular machine known as the
spliceosome. Spliceosomes do not exist pre-assembled into splicing active conformations. Instead, splice sites
(SS) are specifically chosen through the stepwise assembly of five small nuclear ribonuclear protein complexes
consisting of a small nuclear RNA and a large number of associated proteins. These spliceosome assemblies
are charged with correctly identifying and juxtaposing splice sites that are not explicitly sequence encoded in the
pre-mRNA. Adding to the complexity of splice site selection, >90-95% of human pre-mRNAs are alternatively
spliced by varying the configuration of which regions are joined and which are removed from multi-exon
containing genes. Splicing errors associated with alternative usage of splice sites are implicated in a large
number of human diseases such as Hutchinson-Gilford progeria syndrome (alternative 5'SS), dilated
cardiomyopathies (alternative 3'SS), Myelodysplastic syndromes (altered 3'SS preference) and early-onset
Parkinson Disease (cryptic splice site usage). Despite decades of research to characterize splicing mechanisms,
the mechanisms that control splice site usage are incompletely understood. To fill this knowledge gap, the long-
term goal of the candidate is to characterize the mechanisms that control splice site selection and the splicing
factors involved. In this project, I propose to investigate protein-driven RNA rearrangements during splicing
catalysis using single-molecule fluorescence microscopy methods through three specific aims. In aim 1, I will
implement a single molecule Förster resonance energy transfer (smFRET) approach to characterize a conserved
spliceosome rearrangement driven by the Prp22 helicase that leads to displacement of ligated mRNA from a
conserved region in the spliceosome catalytic core, U5 snRNA loop 1. A Prp22 variant will be used to stall
spliceosomes onto a surface immobilized pre-mRNA just after exon ligation but prior to release from the
spliceosome. Prp22-driven displacement of the ligated mRNA will subsequently be monitored using fluorescent
reporters installed on U5 snRNA loop 1 and the RNA substrate, respectively. Specific Aims 2 and 3 propose the
investigation of a human-specific protein, FAM32A, hypothesized to stabilize the interaction between the 5' exon
and U5 loop 1 in order to facilitate ligation to the 3' SS. Together, this work will answer questions about conserved
and metazoan-specific mechanisms involved in the late stages of pre-mRNA splicing catalysis. This project will
advance the applicant's career goal of running an independent laboratory at an academic institution in a way
that combines her graduate training in mechanistic enzymology with her ongoing postdoctoral training in RNA
molecular biology and biophysics to characterize the mechanisms and assembly of complex macromolecular
machines whose proper functions are vital to human health.
项目概要
在真核生物中,转录的 RNA 从前体信使 RNA (pre-mRNA) 加工成
成熟的 RNA 在称为剪接的过程中,在这种 RNA 加工机制中,非编码区域被剪接。
前 mRNA 被去除,侧翼区域由一个称为“
剪接体并不预先组装成剪接活性构象,而是存在剪接位点。
(SS)是通过逐步组装五个小核核糖核蛋白复合物而专门选择的
由小的核 RNA 和大量相关蛋白组成。
负责正确识别和并置未明确序列编码的剪接位点
增加了剪接位点选择的复杂性,> 90-95% 的人类前体 mRNA 是交替的。
通过改变连接的配置和从多外显子中删除的剪接区域
与剪接位点的替代使用相关的剪接错误与大量基因有关。
许多人类疾病,例如 Hutchinson-Gilford 早衰综合症(替代 5'SS),扩张
心肌病(替代 3'SS)、骨髓增生异常综合征(改变 3'SS 偏好)和早发型
帕金森病(神秘的剪接位点使用)尽管进行了数十年的研究来表征剪接机制,
控制剪接位点使用的机制尚不完全清楚。为了填补这一知识空白,长期的研究。
候选人的术语目标是描述控制剪接位点选择和剪接的机制
在这个项目中,我建议研究剪接过程中蛋白质驱动的 RNA 重排。
在目标 1 中,我将使用单分子荧光显微镜方法进行催化。
实施单分子福斯特共振能量转移 (smFRET) 方法来表征保守的
由 Prp22 解旋酶驱动的剪接体重排,导致连接的 mRNA 从
剪接体催化核心、U5 snRNA 环 1 中的保守区域。Prp22 变体将用于阻止
在外显子连接后但在从前体释放之前将剪接体固定到表面固定的前体mRNA上
随后将使用荧光监测 Prp22 驱动的连接 mRNA 的位移。
具体目标 2 和 3 提出
研究人类特异性蛋白质 FAM32A,旨在稳定 5' 外显子之间的相互作用
和 U5 环 1 以促进与 3' SS 的连接,这项工作将共同回答有关保守的问题。
该项目将研究参与前体 mRNA 剪接催化后期的后生动物特异性机制。
申请人的职业目标是在学术机构运营独立实验室
将她的机械酶学研究生培训与正在进行的 RNA 博士后培训结合起来
分子生物学和生物物理学来表征复杂大分子的机制和组装
其正常功能对人类健康至关重要的机器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth C Duran其他文献
Elizabeth C Duran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth C Duran', 18)}}的其他基金
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
- 批准号:
10894365 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
- 批准号:
10548142 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
相似国自然基金
乙肝病毒5’剪接位点调节病毒转录和复制的研究
- 批准号:32370165
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
12q13.11区易感位点通过调控COL2A1可变剪接影响骨关节炎发生的机制研究
- 批准号:82372458
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
拟南芥ROE1蛋白介导剪接体识别内含子的5’剪接位点和调控其剪接效率的分子机理研究
- 批准号:32171293
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
由隐含剪接位点产生的EZH2新亚型的分子功能及其在心肌肥厚中的作用
- 批准号:82070231
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
面向第三代RNA测序长读段的定位算法研究
- 批准号:61862017
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The role of U1 snRNP proteins in snRNP biogenesis and gene expression regulation
U1 snRNP 蛋白在 snRNP 生物发生和基因表达调控中的作用
- 批准号:
10796664 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Understanding the mechanism of pre-mRNA splicing
了解前体 mRNA 剪接的机制
- 批准号:
10387298 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
- 批准号:
10894365 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Protein-driven dynamics of pre-mRNA splicing catalysis through single molecule microscopy
通过单分子显微镜观察蛋白质驱动的前 mRNA 剪接催化动力学
- 批准号:
10548142 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Understanding the mechanism of pre-mRNA splicing
了解前体 mRNA 剪接的机制
- 批准号:
10731756 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别: