Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
基本信息
- 批准号:10349576
- 负责人:
- 金额:$ 39.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-23 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgingAnabolismAutomobile DrivingBiochemicalCarbohydratesCardiovascular DiseasesCardiovascular systemClinicalDataDefectDevelopmentDiabetes MellitusDiseaseDisuse AtrophyEffectivenessEventExhibitsFOXO1A geneFunctional disorderGeneticGlucoseGlucose IntoleranceGoalsGrowthHomeostasisHormonesHumanHyperglycemiaIndividualInsulinInsulin ResistanceInsulin Signaling PathwayInvestigationIsotope LabelingKnowledgeMeasuresMediatingMedicalMetabolicMetabolic ControlMetabolic DiseasesMitochondriaModelingMolecularMolecular TargetMusMuscleMuscle MitochondriaMuscle ProteinsMuscle functionMuscular AtrophyNon-Insulin-Dependent Diabetes MellitusOrganPathway interactionsPerformancePharmacologyPhosphotransferasesPilot ProjectsPlayProtein BiosynthesisProtein-Serine-Threonine KinasesProto-Oncogene Proteins c-aktRegulationResearchRoleSignal PathwaySignal TransductionSkeletal MuscleTechniquesTestingTherapeutic InterventionTimeTreatment Efficacyadenylate kinaseblood glucose regulationcarbohydrate metabolismdiabeticexperimental studygenetic manipulationglucose disposalglucose metabolismglucose uptakeimprovedin vivoinsulin mediatorsinsulin sensitivityinsulin signalinginterestmetabolomicsmitochondrial dysfunctionmolecular modelingmuscle formnew therapeutic targetnovel therapeuticsphosphoproteomicspreservationprotein degradationprotein metabolismrestorationskeletal muscle growthskeletal muscle metabolismskeletal muscle wastingstemuptakewasting
项目摘要
Project Summary
The number of individuals with type 2 diabetes mellitus (T2DM) remains at an all-time high and is predicted to
increase over the next decade. Therefore, it is of significant medical interest to define the underlying mechanisms
driving T2DM to improve therapeutic efficacy. Insulin resistance, a condition known as reduced effectiveness to
the hormone insulin, is associated with altered glucose homeostasis and muscle dysfunction. Despite decades
of investigation, critical knowledge gaps remain in the molecular mechanisms that are responsible for the
initiation and propagation of insulin resistance. The skeletal muscle plays a significant role in glucose
homeostasis and accounts for a majority of glucose disposal following a meal. Defects in the insulin signaling
pathway in the skeletal muscle have been hypothesized to be the primary cause of insulin resistance leading to
hyperglycemia, altered protein metabolism and cardiovascular disease. Accumulating evidence has implicated
the serine/threonine kinase Akt (protein kinase B) as a critical regulator of insulin action. To directly test the
hypothesis that reduced insulin signaling via AKT causes insulin resistance and alters muscle function, we
generated mice that lack AKT signaling specifically in skeletal muscle and surprisingly found that insulin can
stimulate skeletal muscle glucose uptake and utilization in the absence of AKT. These data are inconsistent with
the canonical molecular model of insulin resistance and suggest AKT is not an obligate intermediate in the control
of skeletal muscle glucose metabolism by insulin in all conditions. The identification of this AKT-independent
pathway and its role carbohydrate homeostasis will be the focus of Aim 1 of this proposal. Although mice lacking
AKT in skeletal muscle have normal glucose uptake and insulin sensitivity, we found that they nevertheless
exhibit significant muscle atrophy and mitochondrial dysfunction with a corresponding defect in muscle
performance, confirming that AKT is required for muscle growth and function in vivo. The downstream
mechanisms responsible for AKT’s control of muscle growth and function will be defined in Aim 2. Collectively,
this proposal will build upon these important observations and elucidate the Akt-dependent and independent
pathways that control the metabolic actions of insulin in vivo. These experiments have the potential to profoundly
affect our mechanistic understanding of the pathways underlying insulin resistance and will lead to the
identification of new therapeutic targets for T2DM, cardiovascular and skeletomuscular diseases.
项目概要
2 型糖尿病 (T2DM) 患者数量仍处于历史最高水平,预计将继续增加
因此,确定其潜在机制具有重要的医学意义。
推动 T2DM 提高治疗效果,这种情况称为胰岛素抵抗效果降低。
尽管几十年来,胰岛素激素仍与葡萄糖稳态改变和肌肉功能障碍有关。
根据调查,关键的知识差距仍然存在于负责这一现象的分子机制中。
骨骼肌在胰岛素抵抗的发生和传播中起着重要作用。
体内平衡并解释了餐后胰岛素信号传导缺陷的大部分。
骨骼肌中的途径已被认为是导致胰岛素抵抗的主要原因
越来越多的证据表明高血糖、蛋白质代谢改变和心血管疾病有关。
丝氨酸/苏氨酸激酶 Akt(蛋白激酶 B)作为胰岛素作用的关键调节剂 直接测试
假设通过 AKT 减少胰岛素信号传导会导致胰岛素抵抗并改变肌肉功能,我们
产生的小鼠骨骼肌中特别缺乏 AKT 信号传导,令人惊讶地发现胰岛素可以
在缺乏 AKT 的情况下刺激骨骼肌葡萄糖的摄取和利用 这些数据与此不一致。
胰岛素抵抗的经典分子模型并表明 AKT 不是对照中的必然中间体
骨骼肌葡萄糖代谢在所有条件下的胰岛素依赖性的鉴定。
途径及其作用碳水化合物稳态将是本提案目标 1 的重点,尽管小鼠缺乏。
骨骼肌中的 AKT 具有正常的葡萄糖摄取和胰岛素敏感性,但我们发现它们仍然
表现出明显的肌肉萎缩和线粒体功能障碍,并伴有相应的肌肉缺陷
性能,证实 AKT 是体内肌肉生长和功能所必需的。
负责 AKT 控制肌肉生长和功能的机制将在目标 2 中定义。总的来说,
该提案将建立在这些重要观察的基础上,并阐明 Akt 的依赖性和独立性
这些实验有可能深刻地揭示控制体内胰岛素代谢作用的途径。
影响我们对胰岛素抵抗途径的机制理解,并将导致
确定 T2DM、心血管和骨骼肌肉疾病的新治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Michael Titchenell其他文献
Paul Michael Titchenell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Michael Titchenell', 18)}}的其他基金
Hepatic mTORC1 Signaling and the Regulation of Lipid Homeostasis
肝脏 mTORC1 信号转导和脂质稳态的调节
- 批准号:
10552696 - 财政年份:2021
- 资助金额:
$ 39.95万 - 项目类别:
Hepatic mTORC1 Signaling and the Regulation of Lipid Homeostasis
肝脏 mTORC1 信号转导和脂质稳态的调节
- 批准号:
10207893 - 财政年份:2021
- 资助金额:
$ 39.95万 - 项目类别:
Hepatic mTORC1 Signaling and the Regulation of Lipid Homeostasis
肝脏 mTORC1 信号转导和脂质稳态的调节
- 批准号:
10352468 - 财政年份:2021
- 资助金额:
$ 39.95万 - 项目类别:
Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
- 批准号:
10502819 - 财政年份:2020
- 资助金额:
$ 39.95万 - 项目类别:
Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
- 批准号:
10327861 - 财政年份:2020
- 资助金额:
$ 39.95万 - 项目类别:
Regulation of Skeletal Muscle Metabolism by Insulin Signaling
胰岛素信号对骨骼肌代谢的调节
- 批准号:
10569040 - 财政年份:2020
- 资助金额:
$ 39.95万 - 项目类别:
Insulin regulation of glucose metabolism independent of hepatic Akt
胰岛素对葡萄糖代谢的调节不依赖于肝脏 Akt
- 批准号:
8764642 - 财政年份:2013
- 资助金额:
$ 39.95万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
任务切换影响相继记忆的脑机制:基于认知老化的视角
- 批准号:32360201
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
生物炭介导下喀斯特耕地土壤微塑料老化及其对Cd有效性的影响机制
- 批准号:42367031
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 39.95万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 39.95万 - 项目类别:
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别: