Semi-automated bladder cancer screening using machine learning: clinical validation and implementation.

使用机器学习的半自动膀胱癌筛查:临床验证和实施。

基本信息

  • 批准号:
    10349701
  • 负责人:
  • 金额:
    $ 23.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary / Abstract: Bladder cancer is the 7th most common malignancy worldwide and has the highest recurrence rate of any cancer (70%).1–3 Patients with risk factors (smoking, arsenic / chemical dye exposure) and / or hematuria are routinely screened for bladder cancer via analysis of voided urine. The cellular elements of the urine are deposited to glass slides, stained, and examined by a cytopathologist for features of bladder cancer using the gold standard Paris System for Urine Cytopathology.4 However, the Paris System is subjective and the morphology of urothelial cells is highly varied, making the process difficult and prone to high interobserver variability and human errors borne of fatigue and overwork.5,6 A more quantitative, automated method of assessing urine cytopathology for bladder cancer is needed. Machine learning (ML) technologies have proven to be highly effective in image based classification in pathology, in that ML models operate reproducibly and without bias (unless the training data is biased) or fatigue. Pap smears are already routinely processed by a semi-automated ML system (BD FocalPoint), and share many common features with urine cytology specimens in that both are cancer screening tests relying on cellular and nuclear morphology and prepared by Liquid Based Preparation (LBP, e.g. ThinPrep) methods. Yet to date no system has been developed to harness ML for bladder cancer in this way, a fact I intend to change. While it is my strong belief that pathology as a discipline is poised to make the transition to a 100% digital service, there is significant inertia to overcome to replace the current analog microscope technology. We must go beyond simply providing a digital alternative by augmenting the skills of the pathologist with ML algorithms that empower them to work more efficiently, quickly and safely. Urine cytology screening for bladder cancer is an ideal use case. Thus we sought to create a prototype ML based algorithm, dubbed AutoParis, that would automate the tabulation of the Paris System. The initial prototype of AutoParis proved to be highly effective at risk stratifying urine cytology specimens by tabulating statistics related to nuclear to cytoplasmic ratio (NC ratio, a very important indicator of neoplasia) and cellular / nuclear morphological atypia.7 Deploying AutoParis as a diagnostic aid to the cytopathologist will require several additional steps. Although I was skilled enough to code the first iteration of the model, I am reaching the limits of what I can accomplish as a self-taught programmer and data scientist. In order to complete my work on AutoParis and continue to innovate in the field of digital pathology and ML, I need a more formalized education in specialized mathematics, statistics, ML theory and programming. Through this award I will pursue a curriculum of courses at Dartmouth College guided by a team of expert mentors. My mentors and collaborators were also selected for their ability to help with the testing and validation of digital decision aids, grant and manuscript prep and lab management. I will emerge from this experience with the skills I need to be a leader in the future of ML development and its adoption in clinical medicine.
项目摘要/摘要: 膀胱癌是全球第七大常见恶性肿瘤,并且是所有癌症中复发率最高的 (70%).1–3 存在危险因素(吸烟、砷/化学染料暴露)和/或血尿的患者是常规的 通过分析尿液中的细胞成分来筛查膀胱癌。 载玻片,由细胞病理学家使用金标准染色和检查膀胱癌的特征 尿液细胞病理学巴黎系统。4 然而,巴黎系统是主观的,尿路上皮的形态学 细胞差异很大,使得整个过程变得困难,并且容易出现观察者间的高度变异性和人为错误 5,6 一种更定量、自动化的尿液细胞病理学评估方法 膀胱癌所需的机器学习 (ML) 技术已被证明在基于图像的方面非常有效。 病理学分类,因为 ML 模型可重复且无偏差地运行(除非训练数据是 半自动机器学习系统 (BD) 已对子宫颈抹片检查进行常规处理。 FocalPoint),与尿细胞学标本有许多共同特征,因为两者都是癌症筛查 依赖于细胞和核形态并通过液体制备(LBP,例如 ThinPrep)进行的测试 然而迄今为止,还没有开发出以这种方式利用机器学习治疗膀胱癌的系统,这是我的意图。 虽然我坚信病理学作为一门学科有望实现 100% 的转变。 数字服务,我们要克服取代当前模拟显微镜技术的巨大惯性。 必须不仅仅是通过机器学习增强病理学家的技能来提供数字替代方案 使他们能够更高效、更快速、更安全地进行膀胱尿细胞学筛查的算法。 癌症是一个理想的用例,因此我们试图创建一个基于 ML 的算法原型,称为 AutoParis。 AutoParis 的最初原型被证明是高度自动化的。 通过制表与核质比相关的统计数据,有效对尿细胞学标本进行风险分层 (NC 比率,肿瘤形成的一个非常重要的指标)和细胞/核形态异型性。7 部署 AutoParis 作为细胞病理学家的诊断辅助工具需要几个额外的步骤,尽管我很熟练。 足以编写模型的第一次迭代,我已经达到了自学所能完成的极限 程序员和数据科学家,以完成我在 AutoParis 上的工作并继续在该领域进行创新。 数字病理学和 ML 的相关知识,我需要在专业数学、统计学、ML 理论方面接受更正规的教育 通过这个奖项,我将在达特茅斯学院学习由导师指导的课程。 我的导师和合作者也因其帮助测试的能力而被选中。 以及数字决策辅助的验证、拨款和稿件准备以及实验室管理。 拥有成为未来 ML 开发及其临床应用领导者所需的技能经验 药品。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Louis Joseph Vaickus其他文献

Louis Joseph Vaickus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
  • 批准号:
    62371328
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
  • 批准号:
    62102232
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
  • 批准号:
    11701348
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
  • 批准号:
    61401294
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Implementing and Scaling the STEADI Fall Prevention Algorithm Using a Conversational Relational Agent for Community-Dwelling Older Adults with and without Mild Cognitive Impairment (MCI).
使用对话关系代理为社区居住的患有或不患有轻度认知障碍 (MCI) 的老年人实施和扩展 STEADI 跌倒预防算法。
  • 批准号:
    10822816
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
  • 批准号:
    10611212
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
Development and Evaluation of Portable Compendium of Psychophysical and Physiological Tests for Alzheimer's Disease and Related Dementias (ADRD)
阿尔茨海默病和相关痴呆症(ADRD)便携式心理物理和生理测试纲要的开发和评估
  • 批准号:
    10699349
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
  • 批准号:
    10688715
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
Development and Evaluation of Portable Compendium of Psychophysical and Physiological Tests for Alzheimer's Disease and Related Dementias (ADRD)
阿尔茨海默病和相关痴呆症(ADRD)便携式心理物理和生理测试纲要的开发和评估
  • 批准号:
    10699349
  • 财政年份:
    2023
  • 资助金额:
    $ 23.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了