CRISPR-based transistors for high throughput multiplexed monitoring of CRISPR-based editing efficiency for Sickle cells disease
基于 CRISPR 的晶体管,用于高通量多重监测镰状细胞病的基于 CRISPR 的编辑效率
基本信息
- 批准号:10346886
- 负责人:
- 金额:$ 40.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-07 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesAllogenicAmino Acid SequenceBindingBiological AssayBlood TransfusionCRISPR/Cas technologyCell SeparationCellsChromatinChromatin StructureClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCodon NucleotidesCollaborationsComplexConsumptionDNADNA analysisDevelopmentDiseaseEmploymentEngraftmentEnsureEnzymesErythrocytesEvaluationFetal HemoglobinFlow CytometryGasesGenesGenetic ModelsGenomic DNAGenomicsGlutamatesGoalsGuide RNAHematopoietic Stem Cell TransplantationHematopoietic stem cellsHemoglobinopathiesHeritabilityHumanHuman GenomeImmunologicsIn VitroInfectionInfection preventionInfertilityJournalsLibrariesLife ExpectancyMembrane ProteinsMendelian disorderMethodsMissense MutationMonitorMorphologic artifactsMutationNatureNucleotidesOpticsOrganOrthologous GenePathogenicityPatientsPhysiologicalPoint MutationPolymorphism AnalysisPopulationPreparationPrevalenceProcessProductionPublishingQuality ControlQuality of lifeRNA libraryResourcesSafetySamplingSickle Cell AnemiaSingle Nucleotide PolymorphismSourceSystemTechnologyTestingTherapeuticTimeTissuesTransistorsTransplantationTreatment EfficacyValineVendorbasebase editingcostcost effectivecurative treatmentsdesigndetection limitearly screeningflexibilitygene therapygenome-widegraft vs host diseasegraphenehigh riskimprovedin vivonanoelectronicsnanoscalenovelnucleaseoff-target siteprogramsscale upscreeningsensorsuccesstooltranscription factor
项目摘要
PROJECT SUMMARY/ABSTRACT
SCD is a heritable disease, which affects a patient's red blood cells (RBCs). This monogenic disorder is
caused by a single nucleotide polymorphism (SNP) within the HBB gene. Despite progress in the treatment
of SCD regarding early screenings, prevention of infections, and blood transfusions, the life expectancy for
SCD patients is still reduced by about 30 years. Currently, allogeneic hematopoietic stem cell
transplantation (HSCT) is the only curative treatment available. Unfortunately, the process is invasive and
associated with high risk of graft-versus-host-disease, infection, and infertility. CRISPR-based gene editing
is a powerful therapeutic tool for potentially curing a wide variety of diseases. However, low editing
efficiency can result in unedited HSPCs outcompeting edited ones, resulting in diminished therapeutic
impact. Current methods for maximizing the percentage of edited cells rely on GFP or surface protein
sequences to be contained within the homologous donor DNA, complex optical assays and cell sorting to
establish cell populations with >85% editing efficiency. We propose to develop a versatile and easy-to-use
platform to monitor and optimize the editing efficiency of CRISPR/Cas9 for SCD gene therapy
applications. This in vitro platform utilizes multiplex CRISPR-transistors to quantify the amount of a
specific sequence within an unamplified genomic DNA sample without the bias associated with the artifacts
of library preparation like other sequencing-based methods. The electronic platform provides rapid readout
with low sample input requirement. By combining the programmability of RNA-guided CRISPR-Cas
technology with the scalability of nano-electronics, the proposed project provides a flexible, and simple to
use ex-vivo monitoring solution for a comprehensive and effective gene therapy quality control. We
will expand CRISPR-transistor design in Aim 1 to yield a sensor which employs a variety of gRNA designs
and RNA-guided Cas nucleases to electronically detect and quantify single nucleotide changes using SCD
as a genetic model. In Aim 2, we will scale up this technology design and fabricate a multiplex gFET
capable of analyzing a single sample with up to 16 different RNA-guided Cas complexes simultaneously
without amplification. In Aim 3, we will utilize this multi-plex CRISPR-transistor platform to rapidly assess
the ex-vivo CRISPR/Cas9 HBB editing efficiency of HSPCs from patients with SCD. In addition, we will
leverage the flexibility of CRISPR-transistor to establish an ON/OFF-target evaluation of the RNA-guided
Cas nuclease in the presence of chromatin structures and compare against existing technologies for off-
target screening, like CIRCLE-seq and genome wide. This project will demonstrate a facile, general
platform for quantification of editing efficiency that has the potential to shorten the processing time,
reducing sample and complexity necessary to ensure high quality of ex-vivo gene therapy.
项目概要/摘要
SCD 是一种遗传性疾病,会影响患者的红细胞 (RBC)。这种单基因疾病是
由 HBB 基因内的单核苷酸多态性 (SNP) 引起。尽管治疗取得进展
SCD 的早期筛查、感染预防和输血、预期寿命
SCD患者仍减少约30年。目前,异体造血干细胞
移植(HSCT)是唯一可用的治疗方法。不幸的是,这个过程是侵入性的,并且
与移植物抗宿主病、感染和不孕症的高风险相关。基于 CRISPR 的基因编辑
是一种强大的治疗工具,有可能治愈多种疾病。但编辑能力低下
效率可能导致未编辑的 HSPC 胜过编辑的 HSPC,从而导致治疗效果下降
影响。目前最大化编辑细胞百分比的方法依赖于 GFP 或表面蛋白
同源供体 DNA 中包含的序列、复杂的光学测定和细胞分选
建立编辑效率 >85% 的细胞群。我们建议开发一种多功能且易于使用的
用于监测和优化用于 SCD 基因治疗的 CRISPR/Cas9 编辑效率的平台
应用程序。该体外平台利用多重 CRISPR 晶体管来量化
未扩增的基因组 DNA 样本中的特定序列,没有与伪影相关的偏差
像其他基于测序的方法一样进行文库制备。电子平台提供快速读数
样品输入要求低。通过结合 RNA 引导的 CRISPR-Cas 的可编程性
技术具有纳米电子学的可扩展性,所提出的项目提供了一种灵活且简单的方法
使用离体监测解决方案进行全面有效的基因治疗质量控制。我们
将扩展 Aim 1 中的 CRISPR 晶体管设计,以产生采用多种 gRNA 设计的传感器
和 RNA 引导的 Cas 核酸酶,使用 SCD 以电子方式检测和量化单核苷酸变化
作为遗传模型。在目标 2 中,我们将扩大该技术设计并制造多路 gFET
能够同时分析具有多达 16 个不同 RNA 引导的 Cas 复合物的单个样品
无需放大。在目标 3 中,我们将利用这种多重 CRISPR 晶体管平台来快速评估
SCD 患者 HSPC 的离体 CRISPR/Cas9 HBB 编辑效率。此外,我们将
利用 CRISPR 晶体管的灵活性来建立 RNA 引导的 ON/OFF 目标评估
Cas 核酸酶在染色质结构存在下的情况,并与现有技术进行比较
目标筛选,如 CIRCLE-seq 和全基因组筛选。该项目将展示一个简单、通用的
量化编辑效率的平台,有可能缩短处理时间,
减少确保高质量离体基因治疗所需的样本和复杂性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kiana Aran其他文献
Kiana Aran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kiana Aran', 18)}}的其他基金
CRISPR-based transistors for high throughput multiplexed monitoring of CRISPR-based editing efficiency for Sickle cells disease
基于 CRISPR 的晶体管,用于高通量多重监测镰状细胞病的基于 CRISPR 的编辑效率
- 批准号:
10548152 - 财政年份:2022
- 资助金额:
$ 40.54万 - 项目类别:
New Generation Blood Exchange Devices for Enhancing Tissue Regeneration and Health
用于增强组织再生和健康的新一代血液交换装置
- 批准号:
9906269 - 财政年份:2018
- 资助金额:
$ 40.54万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲栽培稻抗稻瘟病基因Pi69(t)的功能等位基因克隆及进化解析
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Deciphering unintended large gene modifications in gene editing for sickle cell disease
破译镰状细胞病基因编辑中意外的大基因修饰
- 批准号:
10720685 - 财政年份:2023
- 资助金额:
$ 40.54万 - 项目类别:
CRISPR-based transistors for high throughput multiplexed monitoring of CRISPR-based editing efficiency for Sickle cells disease
基于 CRISPR 的晶体管,用于高通量多重监测镰状细胞病的基于 CRISPR 的编辑效率
- 批准号:
10548152 - 财政年份:2022
- 资助金额:
$ 40.54万 - 项目类别:
Systematic identification of minor histocompatibility antigens to address GVHD
系统鉴定次要组织相容性抗原以解决 GVHD
- 批准号:
10596181 - 财政年份:2022
- 资助金额:
$ 40.54万 - 项目类别:
Mechanisms of resistance to MEK Inhibition in RAS-pathway activated chronic myelomonocytic leukemia
RAS 通路激活的慢性粒单核细胞白血病对 MEK 抑制的抵抗机制
- 批准号:
10652270 - 财政年份:2022
- 资助金额:
$ 40.54万 - 项目类别:
Mechanisms of resistance to MEK Inhibition in RAS-pathway activated chronic myelomonocytic leukemia
RAS 通路激活的慢性粒单核细胞白血病对 MEK 抑制的抵抗机制
- 批准号:
10371601 - 财政年份:2022
- 资助金额:
$ 40.54万 - 项目类别: