Cellular Mechanisms of Behavioral Development in the Vestibulospinal Circuit
前庭脊髓回路行为发展的细胞机制
基本信息
- 批准号:10331006
- 负责人:
- 金额:$ 3.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAfferent NeuronsAgeAnatomyAnimal BehaviorAnimalsAxonBayesian MethodBehaviorBehavioralBehavioral MechanismsBiological AssayBiomechanicsBirthBrainBrain StemCalciumChildhoodComputer ModelsData SetDevelopmentDiseaseEquilibriumFailureFishesFunctional disorderGeneticGoalsHealthHumanImageImpaired healthImpairmentIndividualKnowledgeLarvaLifeLinkMammalsMeasuresMissionModelingMonitorMorphologyMovementMusculoskeletal EquilibriumNervous system structureNeurodevelopmental DisorderNeuronsOpticsOutputPathologyPlayPopulationPostural adjustmentsPosturePropertyPublic HealthReflex actionResearchResearch ProposalsResolutionRoleRotationSensorySpinal CordSwimmingSynapsesTestingTimeTransgenic OrganismsTranslatingUnited States National Institutes of HealthVertebratesWorkZebrafishassociated symptomcourse developmentdevelopmental diseasedisabling symptomexperienceexperimental studyimprovedin vivoinsightloss of functionmature animalneural circuitneurodevelopmentneuromechanismoptogeneticspostnatalposture instabilityrelating to nervous systemresponsesensorimotor systemserial imagingsymptom treatmenttheoriestwo-photonvestibular reflex
项目摘要
PROJECT SUMMARY
After birth, animal behaviors mature as neural circuits refine. While the complexity of most neural
circuits and their associated behaviors has meant the two are often considered separately, these phenomena
are inextricably linked. Revealing how mechanisms of circuit refinement constrain behavioral improvement is
critical to understanding brain development in both healthy and diseased states.
Balance control is a vital sensorimotor behavior that develops postnatally according to evolutionarily
conserved principles across vertebrates. The vestibulospinal circuits that maintain and correct posture also
experience developmental refinement, but it is unclear how observed functional and morphological changes
translate into improved posture control. The postural reflex circuit in larval zebrafish is an ideal model in which
to study how cellular mechanisms of development may instantiate behavioral improvement. As simple
vertebrates, zebrafish have a vestibulospinal reflex circuit that functions similarly to mammals. However, the
zebrafish circuit consists of orders of magnitude fewer neurons. Our lab's efforts have established genetic and
optical means to measure and manipulate neural activity non-invasively with cellular resolution across
development. Furthermore, our lab has defined how postural behaviors improve with age in larval zebrafish.
We have developed a control theoretic framework to understand the biomechanical underpinnings of this
behavioral improvement, and to constrain the neural computations responsible for behavior.
In my preliminary work, I have identified a small set of vestibulospinal neurons as a nexus of postural
development in the larval fish. The goal of this research proposal is twofold: (1) to leverage the zebrafish
vestibulospinal circuit to elucidate cellular mechanisms of circuit development using in vivo longitudinal
imaging, and (2) to model how developing neural circuits permit concurrent behavioral improvement. In Aim 1, I
will determine how sensory responses in individual vestibulospinal neurons change longitudinally across
development. In Aim 2, I will identify how downstream connectivity of vestibulospinal neurons changes both
anatomically and functionally during development. In Aim 3, I will adopt a computational approach to relate the
encoding and decoding capacity of vestibulospinal activity across development to improvement in postural
behaviors. Through the proposed work, I will define hallmarks of sensorimotor circuit development at a cellular
level and relate them to their behavioral consequences. When complete, this work will define how neural circuit
development gives rise to behavioral improvement.
项目概要
出生后,动物的行为随着神经回路的完善而成熟。虽然大多数神经网络的复杂性
电路及其相关行为意味着两者通常被分开考虑,这些现象
有着千丝万缕的联系。揭示电路细化机制如何限制行为改善
对于了解健康和疾病状态下的大脑发育至关重要。
平衡控制是一种重要的感觉运动行为,根据进化规律在出生后发展
脊椎动物中的保守原则。维持和纠正姿势的前庭脊髓回路也
经历发育细化,但尚不清楚如何观察到功能和形态变化
转化为改进的姿势控制。斑马鱼幼虫的姿势反射回路是一个理想的模型,其中
研究发育的细胞机制如何体现行为改善。就这么简单
与脊椎动物一样,斑马鱼也有前庭脊髓反射回路,其功能与哺乳动物相似。然而,
斑马鱼电路由数量级少的神经元组成。我们实验室的努力已经建立了遗传和
光学手段以细胞分辨率非侵入性地测量和操纵神经活动
发展。此外,我们的实验室还定义了斑马鱼幼虫的姿势行为如何随着年龄的增长而改善。
我们开发了一个控制理论框架来理解这一点的生物力学基础
行为改善,并限制负责行为的神经计算。
在我的初步工作中,我已经确定了一小部分前庭脊髓神经元作为姿势的联系
幼鱼的发育。本研究提案的目标有两个:(1)利用斑马鱼
前庭脊髓回路利用体内纵向阐明回路发育的细胞机制
成像,(2) 模拟发育中的神经回路如何同时改善行为。在目标 1 中,我
将确定单个前庭脊髓神经元的感觉反应如何纵向变化
发展。在目标 2 中,我将确定前庭脊髓神经元的下游连接如何改变两者
在发育过程中在解剖学和功能上。在目标 3 中,我将采用计算方法来关联
前庭脊髓活动的编码和解码能力,从发育到姿势改善
行为。通过拟议的工作,我将定义细胞感觉运动电路发展的标志
水平并将其与行为后果联系起来。完成后,这项工作将定义神经电路如何
发展导致行为改善。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyla Hamling其他文献
Kyla Hamling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyla Hamling', 18)}}的其他基金
Cellular Mechanisms of Behavioral Development in the Vestibulospinal Circuit
前庭脊髓回路行为发展的细胞机制
- 批准号:
10594990 - 财政年份:2021
- 资助金额:
$ 3.85万 - 项目类别:
相似国自然基金
适当冷暴露通过肠道菌群调控心脏免疫微环境改善心梗后心室重构和心力衰竭的作用与机制
- 批准号:82330014
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
SIRT1通过TXNIP/NLRP3通路促进巨噬细胞自噬在烟曲霉感染中的作用及机制研究
- 批准号:82360624
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
心外膜细胞中BRD4通过促进MEOX-1表达激活TGF-β信号通路参与糖尿病心肌病纤维化形成的分子机制研究
- 批准号:82300398
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
红毛藻多糖通过增加肠道鼠乳杆菌丰度双向调节免疫功能机制研究
- 批准号:32302098
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腺相关病毒载体介导的circ_12952基因治疗通过激活结直肠癌抗肿瘤免疫增强PD-1抗体疗效的机制研究及临床探索
- 批准号:82303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 3.85万 - 项目类别:
The interactions between myenteric macrophages and enteric neurons shape development and spread of enteric synucleinopathy
肌间巨噬细胞和肠神经元之间的相互作用影响肠突触核蛋白病的发展和扩散
- 批准号:
10723844 - 财政年份:2023
- 资助金额:
$ 3.85万 - 项目类别:
Driving the Progeny of Olfactory HBC Stem Cells toward Neuronal Differentiation
驱动嗅觉 HBC 干细胞后代向神经元分化
- 批准号:
10527167 - 财政年份:2022
- 资助金额:
$ 3.85万 - 项目类别:
A Cell-specific modified CRISPR/Cas9 system for conditional gene disruption in Aedes aegypti
用于埃及伊蚊条件性基因破坏的细胞特异性修饰 CRISPR/Cas9 系统
- 批准号:
10608005 - 财政年份:2022
- 资助金额:
$ 3.85万 - 项目类别:
Driving the Progeny of Olfactory HBC Stem Cells toward Neuronal Differentiation
驱动嗅觉 HBC 干细胞后代向神经元分化
- 批准号:
10642890 - 财政年份:2022
- 资助金额:
$ 3.85万 - 项目类别: