BindingDB: An Open Knowledgebase of Protein-Small Molecule Interactions
BindingDB:蛋白质-小分子相互作用的开放知识库
基本信息
- 批准号:10331669
- 负责人:
- 金额:$ 54.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AreaArtificial IntelligenceBenchmarkingBindingBinding ProteinsBiologicalBiologyBiomedical ResearchCell physiologyCertificationChemicalsChemistryCommunitiesComputer softwareDataData AnalysesData SetDiseaseDocumentationDrug DesignEducational process of instructingEducational workshopElectronic MailFAIR principlesFuture TeacherGovernmentHumanInformation ResourcesKnowledgeLegal patentLigandsLinkMachine LearningMeasurementMeasuresMethodsMolecular WeightNatural Language ProcessingOrganismPathway AnalysisPharmaceutical ChemistryPharmaceutical PreparationsPharmacologic SubstancePharmacologyPhysiciansPractice ManagementProteinsPublicationsPublishingReadabilityResearchResearch PersonnelResourcesScienceScientistSoftware DesignStudentsTestingTimeTrainingTwitterUniversitiesUpdateVocabularyWorkcomputational chemistrydata managementdata preservationdata resourcedata reusedrug discoverydrug repurposingexperiencehigh schoolimprovedinteroperabilityjournal articleknowledgebaseopen sourceoutreachpreservationprotein structure functionrepositorysmall moleculeteacherteaching machinetechnology developmenttooltrendtrustworthinessusabilityweb site
项目摘要
Small, organic molecules that bind specific proteins represent one of the most effective ways
that physicians have to treat diseases and that researchers can use to probe living systems.
Such small molecules, also known as ligands, can act in many ways, such as by blocking a
protein from working, by activating a protein, or by causing the protein to be broken down by
normal cellular processes. In fact, most medications are ligands, and researchers in
universities, government labs, and pharmaceutical companies, are constantly at work seeking
new ones as drugs and biological probes. These ongoing efforts generate a continuous flow of
information about what small molecules bind what proteins, and how tightly.
This information is useful not only within the specific project that generated it, but also for many
other applications, such as helping researchers identify probe molecules to help with their
research, serving as benchmarks for computational chemists creating software designed to
predict ligand-protein binding, and training and testing machine-learning tools for drug design.
However, scientists generating this information typically release it in scientific articles or patents,
where it cannot easily be found or accessed by other researchers.
The core purpose of this project is to further develop the BindingDB Knowledgebase,
dramatically expanding the availability of protein-ligand binding information and connecting this
information to other areas of knowledge in order to make it as broadly useful as possible. This
will be accomplished by using a combination of automated and human methods to carry out
fast, accurate extraction of large volumes of data from scientific articles and patents. These data
will be rendered in machine readable format, linked with related data, such as information on
protein structure and function, and made publicly available in open source format via the
searchable BindingDB website, which also allows data to be downloaded in quantity for offline
use.
The information in BindingDB will be managed according to high community standards for
findability, accessibility, interoperability, and reusability (FAIR), and the project will achieve the
high CoreTrustSeal standards and certification for reliability and long-term preservation. In
addition, steps will be taken to maximize usability and integration of this information, such as by
making it available as a public dataset in emerging cloud resources and creating links from on-
line journal articles and patents to the data extracted from them in BindingDB.
结合特定蛋白质的有机小分子是最有效的方法之一
医生可以用它来治疗疾病,研究人员可以用它来探测生命系统。
这种小分子,也称为配体,可以通过多种方式发挥作用,例如通过阻断
通过激活蛋白质或导致蛋白质被分解,蛋白质无法发挥作用
正常的细胞过程。事实上,大多数药物都是配体,研究人员
大学、政府实验室和制药公司一直在努力寻找
新的药物和生物探针。这些持续的努力产生了源源不断的
有关哪些小分子与哪些蛋白质结合以及结合程度的信息。
此信息不仅在生成它的特定项目中有用,而且对于许多
其他应用,例如帮助研究人员识别探针分子以帮助他们
研究,作为计算化学家创建软件的基准
预测配体-蛋白质结合,以及训练和测试用于药物设计的机器学习工具。
然而,生成这些信息的科学家通常会在科学文章或专利中发布它,
其他研究人员无法轻易找到或访问它。
该项目的核心目的是进一步开发BindingDB知识库,
极大地扩展了蛋白质-配体结合信息的可用性并将其连接起来
将信息传递给其他知识领域,以使其尽可能广泛地发挥作用。这
将通过使用自动化和人工方法的结合来完成
从科学文章和专利中快速、准确地提取大量数据。这些数据
将以机器可读的格式呈现,并与相关数据链接,例如有关信息
蛋白质结构和功能,并通过开源格式公开提供
可搜索的BindingDB网站,还可以离线批量下载数据
使用。
BindingDB中的信息将按照高社区标准进行管理
可查找性、可访问性、互操作性和可重用性(公平),并且该项目将实现
高 CoreTrustSeal 标准和认证,确保可靠性和长期保存。在
此外,将采取措施最大限度地提高这些信息的可用性和集成度,例如通过
使其成为新兴云资源中的公共数据集,并从本地创建链接
将期刊文章和专利与从 BindingDB 中提取的数据进行关联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL K. GILSON其他文献
MICHAEL K. GILSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL K. GILSON', 18)}}的其他基金
BindingDB: An Open Knowledgebase of Protein-Small Molecule Interactions
BindingDB:蛋白质-小分子相互作用的开放知识库
- 批准号:
10706457 - 财政年份:2022
- 资助金额:
$ 54.14万 - 项目类别:
Accounting for Water Structure and Thermodynamics in Computer-Aided Drug Design
计算机辅助药物设计中的水结构和热力学考虑
- 批准号:
9022279 - 财政年份:2013
- 资助金额:
$ 54.14万 - 项目类别:
Accounting for Water Structure and Thermodynamics in Computer-Aided Drug Design
计算机辅助药物设计中的水结构和热力学考虑
- 批准号:
9060952 - 财政年份:2013
- 资助金额:
$ 54.14万 - 项目类别:
Accounting for Water Structure and Thermodynamics in Computer-Aided Drug Design
计算机辅助药物设计中的水结构和热力学考虑
- 批准号:
8727620 - 财政年份:2013
- 资助金额:
$ 54.14万 - 项目类别:
Accounting for Water Structure and Thermodynamics in Computer-Aided Drug Design
计算机辅助药物设计中的水结构和热力学考虑
- 批准号:
8576645 - 财政年份:2013
- 资助金额:
$ 54.14万 - 项目类别:
BindingDB: A Tool for Drug Discovery, Modeling and Chemical and Molecular Biology
BindingDB:药物发现、建模以及化学和分子生物学的工具
- 批准号:
8079016 - 财政年份:2004
- 资助金额:
$ 54.14万 - 项目类别:
相似国自然基金
基于多模态分子影像和人工智能的结直肠癌PD-L1表达演变预测及机制研究
- 批准号:82302185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
- 批准号:72303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算模拟和人工智能融合策略的卡宾蛋白酶优化和设计
- 批准号:22303102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
教育人工智能背景下课程智慧大脑构建研究
- 批准号:62367003
- 批准年份:2023
- 资助金额:29 万元
- 项目类别:地区科学基金项目
人工智能驱动的PDE4抑制剂设计及抗肺纤维化作用研究
- 批准号:82304384
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging Natural Language Processing for Reverberant Speech Enhancement in Cochlear Implants
利用自然语言处理增强人工耳蜗的混响语音
- 批准号:
10755798 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Computational Image Analysis of Renal Transplant Biopsies to Predict Graft Outcome
肾移植活检的计算图像分析以预测移植结果
- 批准号:
10733292 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Skills and Workforce Core- Ping/Watson
技能和劳动力核心 - Ping/Watson
- 批准号:
10863104 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Federated digital pathology platform for AD/ADRD research and diagnostics
用于 AD/ADRD 研究和诊断的联合数字病理学平台
- 批准号:
10734939 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Skills and Workforce Core- Ping/Watson
技能和劳动力核心 - Ping/Watson
- 批准号:
10655491 - 财政年份:2022
- 资助金额:
$ 54.14万 - 项目类别: