Exploring the effects of extracellular fluid viscosity on cell migration and cancer metastasis

探索细胞外液粘度对细胞迁移和癌症转移的影响

基本信息

  • 批准号:
    10338078
  • 负责人:
  • 金额:
    $ 4.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Mechanical cues and the local physical environment play fundamental roles in a host of cellular processes, ranging from stem cell differentiation to cell motility. While the significance of the stiffness of the extracellular microenvironment has been well-studied, the role of others physical factors, such as fluid viscosity and hydrostatic pressure, are less understood. The viscosities of biological fluids span orders of magnitude, and due to lymph circulation, disease development, and fluctuations in protein secretion, cells directly in contact with mucus, extracellular fluid (ECF), and saliva are often subjected to variations in viscosity. Additionally, abnormal ECF viscosity is associated with diseases such as cystic fibrosis, idiopathic pulmonary fibrosis, and cancer. In the context of cancer, leaky vasculature and matrix degradation within the tumor microenvironment lead to high local concentrations of plasma proteins and soluble collagen that could increase ECF viscosity. Moreover, mucins, the large, heavily-glycosylated extracellular proteins responsible for the high viscosity of mucus and saliva, are overexpressed in many malignancies. Despite that higher mucus/ECF viscosity is observed in chronic lung disease and cancer patients, it is not well studied, that how cells are further affected by the altered viscosity, as well as how altered viscosity can additionally promote the disease progression. A recent study revealed that counterintuitively cell migration speed increases in mesenchymal-like cell lines, as the cells navigate the aquatic environment of higher viscosity. I plan to characterize the effects of high viscosity in multiple cell types and cocultures that are physiologically relevant, to identify the mechanisms behind the changes in cell motility and cytoskeleton dynamics to elevated viscosity, and to build a quantitative model to predict the effect of viscosity in cell migration, and to predict the effect of potential pharmaceutical perturbations.
项目概要 机械线索和当地的物理环境在许多方面发挥着重要作用 细胞过程,从干细胞分化到细胞运动。虽然意义 细胞外微环境的硬度已得到充分研究,其他因素的作用 人们对物理因素(例如流体粘度和静水压力)了解较少。这 生物体液的粘度跨越几个数量级,并且由于淋巴循环、疾病 发育和蛋白质分泌的波动,细胞直接与粘液接触, 细胞外液 (ECF) 和唾液的粘度经常会发生变化。此外, ECF 粘度异常与囊性纤维化、特发性肺病等疾病有关 纤维化和癌症。在癌症的背景下,血管系统渗漏和基质降解 肿瘤微环境导致血浆蛋白和可溶性局部浓度高 可以增加 ECF 粘度的胶原蛋白。此外,粘蛋白,即大的、高度糖基化的 导致粘液和唾液高粘度的细胞外蛋白过度表达 在许多恶性肿瘤中。尽管在慢性肺中观察到较高的粘液/ECF粘度 对于疾病和癌症患者,细胞如何进一步受到影响还没有得到很好的研究。 粘度改变,以及粘度改变如何进一步促进疾病 进展。最近的一项研究表明,与直觉相反,细胞迁移速度在 间充质样细胞系,因为细胞在较高粘度的水生环境中导航。我 计划表征高粘度对多种细胞类型和共培养物的影响 生理相关,以确定细胞运动变化背后的机制 细胞骨架动力学以提高粘度,并建立定量模型来预测 粘度对细胞迁移的影响,并预测潜在药物的效果 扰动。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How sticky? How tight? How hot? Imaging probes for fluid viscosity, membrane tension and temperature measurements at the cellular level.
有多粘?
  • DOI:
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pittman, Matthew;Ali, Abdulla M;Chen, Yun
  • 通讯作者:
    Chen, Yun
Topological defects of integer charge in cell monolayers.
细胞单层中整数电荷的拓扑缺陷。
  • DOI:
  • 发表时间:
    2021-06-28
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Endresen, Kirsten D;Kim, MinSu;Pittman, Matthew;Chen, Yun;Serra, Francesca
  • 通讯作者:
    Serra, Francesca
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Pittman其他文献

Matthew Pittman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
  • 批准号:
    82370648
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
  • 批准号:
    32371053
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
  • 批准号:
    32301034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
  • 批准号:
    12372314
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
  • 批准号:
    82371081
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
  • 批准号:
    10586534
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
Rac1 and the actin cytoskeleton in renal tubular repair
Rac1 和肌动蛋白细胞骨架在肾小管修复中的作用
  • 批准号:
    10739610
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
Chemoattractant-specific T cell navigation of complex environments
复杂环境中化学引诱剂特异性 T 细胞导航
  • 批准号:
    10741224
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
The role of myosin II in tendon repair under glucose control
肌球蛋白 II 在葡萄糖控制下肌腱修复中的作用
  • 批准号:
    10649584
  • 财政年份:
    2022
  • 资助金额:
    $ 4.39万
  • 项目类别:
Regulation of dynamic actin networks during epithelial morphogenesis
上皮形态发生过程中动态肌动蛋白网络的调节
  • 批准号:
    10797655
  • 财政年份:
    2022
  • 资助金额:
    $ 4.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了