The Therapeutic Role for LOLX2 in Pulmonary Hypertension
LOLX2 在肺动脉高压中的治疗作用
基本信息
- 批准号:10326830
- 负责人:
- 金额:$ 17.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAnimal ModelAnimalsArteriesAttenuatedAwardBiologicalBiological AssayBiologyBlood VesselsCRISPR/Cas technologyCardiac Catheterization ProceduresCell AdhesionCell modelCell physiologyCellsCessation of lifeChronicCollagenComplexCouplingCytometryDataDepositionDevelopmentDiseaseEchocardiographyElastinElementsExtracellular MatrixFoundationsGenerationsGenesGoalsHeart failureHumanHypertrophyHypoxiaImmunohistochemistryImpairmentInterruptionKnock-outLOXL2 geneLungMADH2 geneMATRICS Consensus Cognitive BatteryMagnetismMeasurementMechanicsMedialMentorsModelingMolecularMonocrotalineMotionMyographyPathway interactionsPatientsPharmacologyPhosphorylationPhosphotransferasesPropertyProtein IsoformsProtein-Lysine 6-OxidasePulmonary CirculationPulmonary HypertensionPulmonary artery structureRattusResearchResearch PersonnelResolutionRight Ventricular DysfunctionRight Ventricular FunctionRight ventricular strainRodent ModelRoleSU 5416Signal PathwaySignal TransductionSmooth Muscle MyocytesStressStructureTestingTherapeuticTissuesTorsionTracerTrainingTransforming Growth Factor alphaVascular remodelingVentricularWestern Blottingamine oxidasearterial stiffnesscareercell behaviorcell motilitycoronary fibrosiscrosslinkeffective therapyelectric impedanceexperimental studyextracellularimmunocytochemistryimprovedimproved outcomein vivo Modelinhibitorinterestknock-downmortalitynovelnovel strategiesnovel therapeutic interventionnovel therapeuticspressurepreventpulmonary arterial hypertensionpulmonary arterial stiffeningreceptorright ventricular failureskillssmall hairpin RNAsmall molecule inhibitorsymptom treatmenttherapeutic targettherapy outcome
项目摘要
PROJECT SUMMARY
In patients with pulmonary hypertension (PH) and especially with pulmonary arterial hypertension
(PAH), pulmonary artery (PA) stiffness increases right ventricular strain and ultimately leads to death
from heart failure. However, despite pulmonary vasculature stiffening with increased impedance being a
paramount mechano-biological regulator of PAH, no therapies currently target this mechanism. Therapy
for PAH continues to focus on symptomatic treatment, vasodilatory therapy, or treatment of the
underlying disease (if known). None of these addresses the fundamental changes in vascular
remodeling.
My long-term career goal is to become an expert in understanding the mechanisms underlying PAH,
thus facilitating the identification of more effective therapies and improving outcomes. This goal directly
builds on my prior research and extends my interests from the systemic to the pulmonary circulation.
Our preliminary data has clearly demonstrated that Lysyl oxidase like-2 (LOXL2) is an attractive gene in
pulmonary arterial stiffness and cardiac fibrosis. LOXL2, is an amine oxidase that catalyzes collagen
crosslinking and contributes to matrix remodeling and stiffening. Our core hypothesis is that increased
LOXL2 expression, secretion, and function contributes to the development of PA stiffening. Our
objective here is to study LOXL2 biology, mechanism, and pathobiology in a hierarchical manner from
cells to rodent models. We will determine how LOXL2 influences cell behavior, tissue mechanics,
function, and matric generation during hypoxia. We will utilize lentiviral shRNA and CRISPR/Cas9 in rat
PA smooth muscle cells. We will use magnetic torsion cytometry, cell substrate impedance sensing, and
tensile testing; test collagen assembly, vasoreactivity, and compliance; and evaluate adhesion, motility,
and proliferation. Furthermore, we will study the relationships between LOXL2 and the TGF-β1 pathway,
as well as its role in rat models of PH and PAH, using multiple models to induce pulmonary vascular
stiffening in the presence an absence of a LOXL2 inhibitor. Measurements will include PA stiffness using
pressure myography and stress strain relationships in isolated vessels, right ventricular function using
high-resolution echocardiography, and right ventricular function using pressure-volume loops. We will
establish the therapeutic potential of LOXL2 inhibition in PAH and test its effects in models of PH and
PAH. This could entail not only a new drug within an existing paradigm but a whole new approach to the
treatment of these patients - altering the structural composition of the extracellular matrix.
With the support of my mentors, my goal during the K08 award period is to acquire the expertise and
training in a nurturing academic setting that will enable me to attain the proficiency necessary to
conduct these experiments, and the independence to continue beyond the award period.
项目概要
肺动脉高压(PH)患者,尤其是肺动脉高压患者
(PAH)、肺动脉(PA)僵硬会增加右心室应变并最终导致死亡
然而,尽管肺血管硬化和阻抗增加是一个原因。
PAH 的重要机械生物调节剂,目前尚无针对该机制的治疗方法。
对于PAH,继续关注对症治疗、血管舒张治疗或治疗
潜在疾病(如果已知)。这些都不能解决血管的根本变化。
重塑。
我的长期职业目标是成为了解 PAH 潜在机制的专家,
从而促进更有效的治疗方法的确定并直接改善这一目标。
以我之前的研究为基础,并将我的兴趣从全身循环扩展到肺循环。
我们的初步数据清楚地表明赖氨酰氧化酶样 2 (LOXL2) 是一个有吸引力的基因
LOXL2 是一种催化胶原蛋白的胺氧化酶。
我们的核心假设是交联并有助于基质重塑和硬化。
LOXL2 的表达、分泌和功能有助于 PA 硬化的发生。
这里的目标是以分层方式研究 LOXL2 生物学、机制和病理学
我们将确定 LOXL2 如何影响细胞行为、组织力学、
我们将在大鼠中利用慢病毒 shRNA 和 CRISPR/Cas9。
PA 平滑肌细胞。我们将使用磁扭转细胞术、细胞基质阻抗传感和
拉伸测试;测试胶原蛋白组装、血管反应性和顺应性并评估粘附性、运动性;
此外,我们将研究 LOXL2 和 TGF-β1 通路之间的关系,
及其在 PH 和 PAH 大鼠模型中的作用,使用多种模型诱导肺血管
在不存在 LOXL2 抑制剂的情况下的硬度测量将包括使用 PA 硬度。
压力肌动描记法和孤立血管的应力应变关系,使用右心室功能
我们将使用压力-容量环进行高分辨率超声心动图和右心室功能检查。
确定 LOXL2 在 PAH 中的治疗抑制潜力,并测试其在 PH 和 PH 模型中的效果
这不仅需要在现有范式中开发一种新药,而且需要一种全新的治疗方法。
这些患者的治疗 - 改变细胞外基质的结构组成。
在导师的支持下,我在 K08 奖励期间的目标是获得专业知识和
在培育性学术环境中接受培训,使我能够获得必要的熟练程度
进行这些实验,并在获奖期限后继续独立。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jochen Steppan其他文献
Jochen Steppan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jochen Steppan', 18)}}的其他基金
The Therapeutic Role for LOLX2 in Pulmonary Hypertension
LOLX2 在肺动脉高压中的治疗作用
- 批准号:
10542408 - 财政年份:2019
- 资助金额:
$ 17.17万 - 项目类别:
相似国自然基金
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SPP1+M2巨噬细胞促进宫腔粘连内膜纤维化的机制和干预研究
- 批准号:82371636
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
相似海外基金
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 17.17万 - 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:
10735681 - 财政年份:2023
- 资助金额:
$ 17.17万 - 项目类别:
Defining the Spatiotemporal Underpinnings of Neutrophil Recruitment, Microvascular Flow, and Oxygenation in Ischemic Stroke
定义缺血性中风中中性粒细胞募集、微血管血流和氧合的时空基础
- 批准号:
10449713 - 财政年份:2023
- 资助金额:
$ 17.17万 - 项目类别: