A Handheld Microchip for GC analysis of breath to screen for COVID-19
用于呼吸气相色谱分析以筛查 COVID-19 的手持式微芯片
基本信息
- 批准号:10320985
- 负责人:
- 金额:$ 95.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-21 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAcuteAddressArtificial IntelligenceBiochemical ProcessBiometryBreath TestsCOVID-19COVID-19 detectionCOVID-19 diagnosticCOVID-19 pandemicCOVID-19 patientCOVID-19 screeningCOVID-19 testCancer DetectionClinicCollaborationsCollectionCommunicable DiseasesContractsCoronavirus InfectionsDetectionDevice or Instrument DevelopmentDevicesDiagnosisDiagnostic testsDiseaseDisease OutbreaksEconomicsEpithelial CellsEthanolExhalationExpert SystemsFoundationsFundingFutureGoalsHourHumanInfluenzaInstitutesInstitutionLaboratoriesMachine LearningMalignant neoplasm of lungMass FragmentographyMedical DeviceModelingMonitorNasal EpitheliumOxidative StressPatientsPatternPersonsProcessProductionProtocols documentationRapid screeningReactionReagentResearch Project GrantsRoleSARS-CoV-2 infectionSamplingSensitivity and SpecificitySignal TransductionSiliconSterilizationSystemTechnologyTest ResultTestingTrainingTranslational ResearchTuberculosisUnited StatesUnited States National Institutes of HealthUniversitiesVial deviceViralViral Respiratory Tract InfectionVirulentVirusVirus Diseasesadductaqueousasymptomatic COVID-19biosafety level 3 facilitybronchial epitheliumcarbonyl compounddetection sensitivitydetectordiagnostic strategyexperienceinnovationinstrumentmachine learning algorithmmetabolomemicrochipmobile computingnovel coronavirusphotoionizationpoint of careportabilitypreventprogramsprototypereagent testingsymptomatic COVID-19toolvirologyvolatile organic compound
项目摘要
Project Summary
The COVID-19 pandemic has caused unprecedented societal suffering and economic disruption. In the
United States, more than six million people have contracted COVID-19 and more than one hundred ninety
thousand patients have died of this disease to date. Although current COVID-19 diagnostic testing technologies
are critical for slowing the spread of the virus and preventing future outbreaks, they are not practical for field use.
Current diagnostic tests are cumbersome to perform because they use aqueous solutions, require multiple steps,
and hours-to-days to obtain results. Since the US began to reopen the economy in May, there has been a
significant increase in the number of COVID-19 cases. Therefore, there is an urgent need to develop a diagnostic
approach that is non-invasive, portable, and can rapidly provide test results.
The overall goal of the project is to develop a mobile breath analysis technology for rapid screening for
COVID-19 using a handheld breath collection tool and a portable GC with a photoionization detector (PID). The
handheld tool will be a closed system for trapping select volatile organic compounds (VOCs) on a microfabricated
chip. The captured VOCs will be eluted with ethanol and then analyzed using a commercially available, portable
GC-PID instrument. Artificial intelligence (AI) and machine learning algorithms will be applied to recognize the
VOC pattern that correlates with COVID-19 infection. The central innovation is the microfabricated chip that
captures carbonyl compounds in exhaled breath and thus serves as a preconcentrator, which enables analysis
of carbonyl VOCs by the portable GC-PID. The hypothesis is that the carbonyl metabolome in exhaled breath is
directly related to the body’s reaction to the novel coronavirus infection, and changes in the carbonyl VOC
composition in exhaled breath relative to healthy controls can be used to detect both symptomatic and
asymptomatic COVID-19 patients.
Three specific aims are proposed to fulfill the overall goal. Aim 1 is to build a disposable handheld breath
analyzer tool for concentrating carbonyl VOCs. Aim 2 is to identify VOC patterns in the breath of COVID-19
patients by machine learning algorithms. Aim 3 is to integrate portable GC technology with the breath sampling
tool for COVID-19 screening guided by an AI system. The University of Louisville is uniquely suited to rapidly
transition the microchip technology to field use because of the PI and Co-PI’s experience in breath analysis and
translational research, and the project team’s experience in virology, infectious diseases, biostatistics, and
artificial intelligence as well as the state-of-the-art facilities that include a MicroNano Technology Center,
Biosafety Level 3 Regional Biocontainment Lab, and an NIH-funded REACH program.
项目概要
COVID-19 大流行造成了前所未有的社会苦难和经济混乱。
美国,超过 600 万人感染了 COVID-19,超过 190 人感染了
尽管目前的 COVID-19 诊断检测技术已导致数千名患者死于这种疾病。
虽然对于减缓病毒传播和防止未来爆发至关重要,但它们不适合现场使用。
目前的诊断测试执行起来很麻烦,因为它们使用水溶液,需要多个步骤,
自美国五月开始重新开放经济以来,出现了数小时至数天的结果。
因此,迫切需要开发一种诊断方法。
该方法是非侵入性的、便携式的并且可以快速提供测试结果。
该项目的总体目标是开发一种移动呼吸分析技术,用于快速筛查
使用手持式呼吸采集工具和带有光电离检测器 (PID) 的便携式 GC 来检测 COVID-19。
手持式工具将是一个封闭系统,用于在微制造的设备上捕获选定的挥发性有机化合物(VOC)
捕获的 VOC 将用乙醇洗脱,然后使用市售便携式芯片进行分析。
GC-PID 仪器将应用人工智能 (AI) 和机器学习算法来识别。
与 COVID-19 感染相关的 VOC 模式 核心创新是微加工芯片。
捕获呼出气中的羰基化合物,从而充当预浓缩器,从而能够进行分析
通过便携式 GC-PID 分析羰基 VOC 假设呼出气中的羰基代谢组是
与人体对新型冠状病毒感染的反应直接相关,羰基VOC的变化
与健康对照相比,呼出气中的成分可用于检测症状和症状
无症状的 COVID-19 患者。
为实现总体目标,提出了三个具体目标:打造一次性手持式呼吸器。
用于浓缩羰基 VOC 的分析仪工具 目标 2 是识别 COVID-19 呼吸中的 VOC 模式。
目标 3 是将便携式 GC 技术与呼吸采样相结合。
由人工智能系统引导的 COVID-19 筛查工具非常适合快速筛查。
由于 PI 和 Co-PI 在呼吸分析和
转化研究,以及项目团队在病毒学、传染病、生物统计学等方面的经验
人工智能以及最先进的设施,包括微纳米技术中心,
生物安全 3 级区域生物防护实验室,以及 NIH 资助的 REACH 计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao-An Fu其他文献
Xiao-An Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao-An Fu', 18)}}的其他基金
A Handheld Microchip for GC analysis of breath to screen for COVID-19
用于呼吸气相色谱分析以筛查 COVID-19 的手持式微芯片
- 批准号:
10266377 - 财政年份:2020
- 资助金额:
$ 95.76万 - 项目类别:
A microreactor chip platform for quantitative analysis of unsaturated aldehydes in exhaled breath
呼出气中不饱和醛定量分析的微反应器芯片平台
- 批准号:
9768418 - 财政年份:2018
- 资助金额:
$ 95.76万 - 项目类别:
A microreactor chip platform for quantitative analysis of unsaturated aldehydes in exhaled breath
呼出气中不饱和醛定量分析的微反应器芯片平台
- 批准号:
9981690 - 财政年份:2018
- 资助金额:
$ 95.76万 - 项目类别:
相似国自然基金
巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
- 批准号:82304503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于解郁散热“把好气分关”探讨代谢-炎症“开关”A2BR在急性胰腺炎既病防变中的作用与机制
- 批准号:82374256
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RacGAP1介导细胞核-线粒体对话在急性肾损伤中促进肾小管上皮细胞能量平衡的作用机制研究
- 批准号:82300771
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开窍寒温配伍调控应激颗粒铁离子富集水平抗急性缺血性卒中铁死亡损伤的机制研究
- 批准号:82374209
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Elucidating the immunology of autoantibody formation and function in COVID-19
阐明 COVID-19 中自身抗体形成和功能的免疫学
- 批准号:
10639707 - 财政年份:2023
- 资助金额:
$ 95.76万 - 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 95.76万 - 项目类别:
Natural model for evaluating within- and cross-species virus transmission
评估物种内和跨物种病毒传播的自然模型
- 批准号:
10735974 - 财政年份:2023
- 资助金额:
$ 95.76万 - 项目类别:
Optimizing the Generation of Monoclonal Antibodies for Prevention and Treatment of HSV Disease
优化用于预防和治疗 HSV 疾病的单克隆抗体的生成
- 批准号:
10717320 - 财政年份:2023
- 资助金额:
$ 95.76万 - 项目类别:
Adjuvant effect of physical exercise on immune response to COVID-19 vaccination and interactions with stress
体育锻炼对 COVID-19 疫苗接种免疫反应的辅助作用以及与压力的相互作用
- 批准号:
10593597 - 财政年份:2023
- 资助金额:
$ 95.76万 - 项目类别: