Modulation of Bacterial Cell Division by (p)ppGpp
(p)ppGpp 对细菌细胞分裂的调节
基本信息
- 批准号:10315737
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAffectAllelesAnabolismAnimal ModelAntibiotic ResistanceAntibioticsBacteriaBacterial PhysiologyBindingBinding ProteinsBiochemistryCell SizeCell WallCell divisionCell physiologyCellsClinicalDNA-Directed RNA PolymeraseDataDefectDown-RegulationEnzymesEquilibriumEscherichia coliFellowshipFilamentGenetic TranscriptionGoalsGrowthGuanosine Triphosphate PhosphohydrolasesLeadLearningLengthLifeMaintenanceMediatingMicroscopyModelingMolecularMolecular MachinesMonobactamsMutationNucleotidesNutrientNutritionalPhenotypeProcessProductionProteinsRegulation of Cell SizeResearchResearch PersonnelResistanceRodRoleSignaling MoleculeStressTechniquesTestingTrainingTranslationsTubulinWorkantimicrobialbeta-Lactam Resistancebeta-Lactamscareercell growthcell typecellular targetingenvironmental adaptationknock-downmutantprofessorresponsescaffold
项目摘要
PROJECT SUMMARY/ABSTRACT
In bacteria, cell size positively correlates with nutrient availability and negatively correlates with levels of
the key nutritional signaling molecules pppGpp and ppGpp (abbreviated (p)ppGpp). (p)ppGpp is produced in
response to environmental nutrient limitation and functions primarily to inhibit biosynthesis and slow growth. In
the model organism Escherichia coli, (p)ppGpp modulates cell physiology at both the transcriptional and post-
transcriptional levels through interactions with RNA polymerase (RNAP) and 56 additional cellular targets.
However, the mechanism by which (p)ppGpp contributes to regulation of cell size is not fully understood. The
balance between cell division and elongation is a major determinant of size in rod-shaped bacteria. Several
pieces of evidence suggest that (p)ppGpp contributes to cell size in part by modulating the balance between
these two processes. Increases in (p)ppGpp levels suppress the heat sensitivity of conditional cell division
mutants and leads to resistance to mecillinam, an antibiotic targeting the elongation machinery (elongasome).
These data suggest that (p)ppGpp positively affects activity of the cell division machinery (divisome). Strains
lacking (p)ppGpp ((p)ppGpp0) are ~30% longer than wild-type cells and frequently filament. These phenotypes
are not recapitulated in RNAP mutants defective for (p)ppGpp binding, suggesting that (p)ppGpp contributes to
cell size through a post-transcriptional interaction with one of its other binding partners.
I hypothesize that (p)ppGpp indirectly promotes divisome assembly and activation via interaction with its
target proteins. To illuminate the molecular basis of (p)ppGpp mediated changes in divisome and elongasome
activity, I propose two complementary aims. In Aim 1, I will characterize the effects of alterations in intracellular
(p)ppGpp concentration on production, assembly, and activation of the cell division machinery. In Aim 2, I will
screen for (p)ppGpp binding proteins that are required to increase cell length. I will then determine the effect of
these proteins on the transcription, translation, assembly, and activity of divisome components (Sub-aim 2b)
and, in Sub-aim 2c, determine the mechanism by which candidate proteins modulate cell division. The expected
contribution of the proposed work is an enhanced understanding of the mechanisms by which (p)ppGpp
modulates bacterial physiology. This contribution is significant because (p)ppGpp is a key component of
environmental adaptation throughout the bacterial kingdom. This proposal will also enhance our understanding
of (p)ppGpp’s role in intrinsic resistance to the clinically important β-lactam antibiotics, which target components
of the divisome and elongasome. In addition, this F32 fellowship will provide me with opportunities to learn new
techniques in microscopy and biochemistry, explore new conceptual avenues, and obtain additional professional
training that will prepare me for a career as a professor and independent investigator.
项目概要/摘要
在细菌中,细胞大小与营养可用性呈正相关,与营养水平呈负相关。
关键营养信号分子 pppGpp 和 ppGpp(缩写为 (p)ppGpp)是在 (p)ppGpp 中产生的。
对环境养分限制的反应,主要作用是抑制生物合成和减缓生长。
模式生物大肠杆菌 (p)ppGpp 在转录和转录后调节细胞生理学
通过与 RNA 聚合酶 (RNAP) 和 56 个其他细胞靶标的相互作用来调节转录水平。
然而,(p)ppGpp 调节细胞大小的机制尚不完全清楚。
细胞分裂和伸长之间的平衡是杆状细菌大小的主要决定因素。
多项证据表明,(p)ppGpp 部分通过调节细胞大小之间的平衡来影响细胞大小。
(p)ppGpp 水平的增加抑制了条件细胞分裂的热敏感性。
突变体并导致对美西林(mecillinam)的耐药性,美西林是一种针对伸长机制(伸长体)的抗生素。
这些数据表明 (p)ppGpp 对细胞分裂机制(分裂体)的活性有积极影响。
缺乏 (p)ppGpp ((p)ppGpp0) 的细胞比野生型细胞长约 30%,并且通常呈丝状。
在 (p)ppGpp 结合缺陷的 RNAP 突变体中没有重演,表明 (p)ppGpp 有助于
通过与其他结合伙伴之一的转录后相互作用来改变细胞大小。
我很欣赏 (p)ppGpp 通过与其相互作用间接促进分裂体的组装和激活
阐明 (p)ppGpp 介导的分裂体和延长体变化的分子基础。
活动中,我提出了两个互补的目标,在目标 1 中,我将描述细胞内变化的影响。
(p)ppGpp 专注于细胞分裂机制的生产、组装和激活 在目标 2 中,我将。
筛选增加细胞长度所需的 (p)ppGpp 结合蛋白,然后我将确定其效果。
这些蛋白质对分裂体成分的转录、翻译、组装和活性的影响(子目标 2b)
在子目标 2c 中,确定候选蛋白质调节细胞分裂的机制。
拟议工作的贡献是加深了对 (p)ppGpp 机制的理解
调节细菌生理学这一贡献非常重要,因为 (p)ppGpp 是细菌生理学的关键组成部分。
这一提议也将增强我们对环境的理解。
(p)ppGpp 在临床上重要的 β-内酰胺抗生素的内在耐药性中的作用,其目标成分
此外,F32 奖学金将为我提供学习新知识的机会。
显微镜和生物化学技术,探索新的概念途径,并获得更多专业知识
培训将使我为教授和独立调查员的职业生涯做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Emily Anderson其他文献
Sarah Emily Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Emily Anderson', 18)}}的其他基金
Modulation of Bacterial Cell Division by (p)ppGpp
(p)ppGpp 对细菌细胞分裂的调节
- 批准号:
10668410 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
Modulation of Bacterial Cell Division by (p)ppGpp
(p)ppGpp 对细菌细胞分裂的调节
- 批准号:
10458524 - 财政年份:2021
- 资助金额:
$ 6.6万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等位基因不平衡表达对采后香蕉果实后熟与品质形成的影响
- 批准号:31972471
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
高温影响水稻不同Wx等位基因表达及直链淀粉含量的分子机制研究
- 批准号:31500972
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
- 批准号:
10638817 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Identifying mechanistic pathways underlying RPE pathogenesis in models of pattern dystrophy
识别模式营养不良模型中 RPE 发病机制的机制途径
- 批准号:
10636678 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Project 2 - Verification and Molecular Mechanisms of T1D Modifier Mutations
项目2-T1D修饰突变的验证和分子机制
- 批准号:
10642554 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
A novel role for Wasl signaling in the regulation of skeletal patterning
Wasl 信号在骨骼模式调节中的新作用
- 批准号:
10718448 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别:
Understanding A Molecular Cascade That Drives Neutrophil Mediated Pathology In Arthritis
了解驱动中性粒细胞介导的关节炎病理学的分子级联
- 批准号:
10658202 - 财政年份:2023
- 资助金额:
$ 6.6万 - 项目类别: