Metabolic Basis of Bacterial Community Function in the Cystic Fibrosis Airway
囊性纤维化气道细菌群落功能的代谢基础
基本信息
- 批准号:10293007
- 负责人:
- 金额:$ 46.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-02 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAcute DiseaseAntibioticsAntimicrobial ResistanceBacteriaBig DataBioinformaticsCell Culture TechniquesChronicChronic DiseaseClinicalClinical DataCommunitiesComplexComputer ModelsConsumptionCulture-independent methodsCystic FibrosisDataData SetDevelopmentDiseaseDisease OutcomeDoseEnergy-Generating ResourcesEventExhibitsExperimental ModelsExposure toFeeding PatternsGenetic DiseasesGenetic studyIn VitroIndividualInfectionLungLung infectionsMachine LearningMeasuresMetabolicMetadataMicrobeMicrobial PhysiologyMinimum Inhibitory Concentration measurementModelingMorbidity - disease rateMucous body substanceMutationNatureOrganismOutcomeOutcome MeasureOutputPathway interactionsPatientsPharmaceutical PreparationsPhenotypePseudomonas aeruginosaPseudomonas aeruginosa infectionPulmonary Function Test/Forced Expiratory Volume 1RegimenResearchResistanceRoleSamplingSputumStaphylococcus aureusStreptococcusStructureTestingVirulenceWorkantibiotic toleranceantimicrobialantimicrobial drugbacterial communitybasebioinformatics toolcystic fibrosis airwaycystic fibrosis infectioncystic fibrosis patientsexperimental studyfeedingimprovedin silicoin vitro Modelin vivoinsightmembermetabolomicsmicrobialmicrobial communitymortalitynovelnovel therapeuticspathogenic bacteriapolymicrobial biofilmpolymicrobial diseasepulmonary functionpulmonary function declinesuccesstooltranslational impact
项目摘要
Abstract. Cystic fibrosis (CF) is a fatal genetic disease characterized by overproduction of mucus in the lungs
followed by chronic lung infections. Conventional wisdom has been that most CF lung infections involve a
single dominant organism, most commonly the pathogenic bacterium Pseudomonas aeruginosa. Advances in
culture-independent techniques have revealed that CF lung infections are rarely mono-microbial and instead
usually involve complex microbial communities, yet the interspecies interactions that drive these communities
are poorly understood. Furthermore, numerous studies have demonstrated that polymicrobial infections are
more difficult than mono-microbial infections to eradicate with antibiotics, leading to the concept of recalcitrant
communities. The mechanisms underlying recalcitrance are thought to involve synergistic interactions between
community members, but very little data are available to understand this phenomenon. Combined with the
realization that many CF patients respond poorly to available antibiotic regimens compels a more detailed
understanding of interspecies interactions and their impacts on antibiotic recalcitrance to improve the treatment
of CF infections, as well as other polymicrobial diseases. Here, we combine big-data bioinformatics, in silico
computational modeling and in vitro culture experiments to gain insights into the metabolic interactions that
drive CF disease outcomes and antibiotic recalcitrance. The research will leverage an available data set of
hundreds of CF patient samples that provide both bacterial composition data and clinical metadata, including
measures of lung function. These samples will be clustered according to their measured compositions and
metabolic capabilities predicted through computational metabolic modeling to test the hypothesis that the vast
complexity of these many bacterial communities can be collapsed into a small number of model communities
that capture most of the observed metabolic variability. These computational predictions will be tested by
developing in vitro cell culture models that recapitulate the most important metabolic features of the in vivo
polymicrobial communities (Aim 1). By applying bioinformatics and modeling to the same clinical data, we will
test the hypothesis that community metabolic features drive disease outcomes and the virulence potential of
these communities (Aim 2). Finally, we will interrogate the clinical data and in vitro communities to test the
hypothesis that community metabolic features drive antibiotic recalcitrance and differentiate community
responsiveness to antibiotics according to these metabolic features (Aim 3). Our research will yield novel
insights into how complex polymicrobial communities are compositionally structured, interact metabolically,
contribute to disease and respond to antibiotics. Moreover, the research will validate in vitro models that offer
the potential for development of novel antimicrobial strategies to better treat chronic, polymicrobial infections in
CF and other diseases. Our transdisciplinary team offers the necessary expertise in bioinformatics,
computational modeling, microbial physiology and CF polymicrobial infections to tackle this complex problem.
抽象的。囊性纤维化(CF)是一种致命的遗传性疾病,其特征是肺部粘液过度产生
其次是慢性肺部感染。传统观点认为,大多数 CF 肺部感染涉及
单一优势生物体,最常见的是致病菌铜绿假单胞菌。进展
独立于培养的技术表明,CF 肺部感染很少是单一微生物感染,而是
通常涉及复杂的微生物群落,但驱动这些群落的种间相互作用
人们了解甚少。此外,大量研究表明,多种微生物感染是
比单一微生物感染更难以用抗生素根除,从而产生了顽固性的概念
社区。顽抗背后的机制被认为涉及之间的协同相互作用
社区成员,但很少有数据可以理解这一现象。结合
认识到许多 CF 患者对现有抗生素治疗方案反应不佳,迫使我们进行更详细的研究
了解种间相互作用及其对抗生素耐药性的影响,以改善治疗
CF 感染以及其他多种微生物疾病。在这里,我们结合了大数据生物信息学,在计算机上
计算模型和体外培养实验,以深入了解代谢相互作用
驱动 CF 疾病结果和抗生素耐药性。该研究将利用可用的数据集
数百个 CF 患者样本,提供细菌成分数据和临床元数据,包括
肺功能的测量。这些样本将根据其测量的成分进行聚类,
通过计算代谢模型预测代谢能力,以检验巨大的假设
这些许多细菌群落的复杂性可以分解为少数模型群落
捕获大部分观察到的代谢变异性。这些计算预测将通过
开发体外细胞培养模型,概括体内最重要的代谢特征
多种微生物群落(目标 1)。通过将生物信息学和建模应用于相同的临床数据,我们将
检验群落代谢特征驱动疾病结果和毒力潜力的假设
这些社区(目标 2)。最后,我们将询问临床数据和体外群体来测试
假设群落代谢特征会导致抗生素耐药性并区分群落
根据这些代谢特征对抗生素的反应(目标 3)。我们的研究将产生新颖的
深入了解复杂的多微生物群落的组成结构、代谢相互作用,
导致疾病并对抗生素产生反应。此外,该研究将验证体外模型
开发新型抗菌策略以更好地治疗慢性多种微生物感染的潜力
CF等疾病。我们的跨学科团队提供生物信息学方面必要的专业知识,
计算模型、微生物生理学和 CF 多种微生物感染来解决这个复杂的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George A. O'Toole其他文献
An in vitro medium for modeling gut dysbiosis associated with cystic fibrosis
用于模拟与囊性纤维化相关的肠道菌群失调的体外培养基
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.2
- 作者:
Kaitlyn E. Barrack;T. Hampton;R. Valls;Sarvesh V. Surve;Timothy B. Gardner;Julie Sanville;Juliette L. Madan;George A. O'Toole - 通讯作者:
George A. O'Toole
蛍光菌のバイオフィルム形成に関与するジグアニル酸シクラーゼの同定
荧光假单胞菌生物膜形成中涉及的二鸟苷酸环化酶的鉴定
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
吉岡 資郎;Peter D. Newell;George A. O'Toole - 通讯作者:
George A. O'Toole
蛍光菌Pf0-1 株のバイオフィルム形成を促進するジグアニル酸シクラーゼの同定
促进荧光假单胞菌菌株 Pf0-1 生物膜形成的二鸟苷酸环化酶的鉴定
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
吉岡 資郎;Peter D. Newell;George A. O'Toole - 通讯作者:
George A. O'Toole
蛍光菌Pf0-1株のバイオフィルム形成を促進するジグアニル酸シクラーゼの同定
促进荧光假单胞菌菌株 Pf0-1 生物膜形成的二鸟苷酸环化酶的鉴定
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
吉岡 資郎;Peter D. Newell;George A. O'Toole - 通讯作者:
George A. O'Toole
Keeping Their Options Open: Acute versus Persistent Infections
保持选择余地:急性感染与持续性感染
- DOI:
10.1128/jb.188.4.1211-1217.2006 - 发表时间:
2006-02-15 - 期刊:
- 影响因子:3.2
- 作者:
S. Furukawa;S. Furukawa;S. L. Kuchma;George A. O'Toole - 通讯作者:
George A. O'Toole
George A. O'Toole的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George A. O'Toole', 18)}}的其他基金
cdG Signaling and Adhesion Deployment During Biofilm Initiation
生物膜启动期间的 cdG 信号传导和粘附部署
- 批准号:
10417364 - 财政年份:2022
- 资助金额:
$ 46.65万 - 项目类别:
cdG Signaling and Adhesion Deployment During Biofilm Initiation
生物膜启动期间的 cdG 信号传导和粘附部署
- 批准号:
10597249 - 财政年份:2022
- 资助金额:
$ 46.65万 - 项目类别:
Arsenic, the Microbiome & Health Outcomes: Mechanisms to Methods of Intervention
砷,微生物组
- 批准号:
10582816 - 财政年份:2022
- 资助金额:
$ 46.65万 - 项目类别:
Metabolic Basis of Bacterial Community Function in the Cystic Fibrosis Airway
囊性纤维化气道细菌群落功能的代谢基础
- 批准号:
10624262 - 财政年份:2021
- 资助金额:
$ 46.65万 - 项目类别:
Metabolic Basis of Bacterial Community Function in the Cystic Fibrosis Airway
囊性纤维化气道细菌群落功能的代谢基础
- 批准号:
10416061 - 财政年份:2021
- 资助金额:
$ 46.65万 - 项目类别:
Surface sensing, memory, and motility control in biofilm formation
生物膜形成中的表面传感、记忆和运动控制
- 批准号:
10317069 - 财政年份:2019
- 资助金额:
$ 46.65万 - 项目类别:
Surface sensing, memory, and motility control in biofilm formation
生物膜形成中的表面传感、记忆和运动控制
- 批准号:
10546429 - 财政年份:2019
- 资助金额:
$ 46.65万 - 项目类别:
相似国自然基金
影像组学用于急性病毒性肺炎鉴别诊断的生物学机制探究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
胆碱能抗炎通路调节巨噬细胞M1/M2极化在CVB3诱导的急性病毒性心肌炎中的作用及机制研究
- 批准号:81870281
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
急性病毒感染中转录因子Tbet对TFH应答的调控及机制研究
- 批准号:31700774
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
调控巨噬细胞极化的microRNA分子鉴定及其在CVB3诱导的急性病毒性心肌炎中的作用
- 批准号:81472017
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
新发急性病毒性传染病免疫预防的实验研究
- 批准号:30471544
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Harnessing the Host Response to Leptosporisis for Diagnosis and Prognosis
利用宿主对钩端孢子虫病的反应进行诊断和预后
- 批准号:
10643293 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
A Point-of-Care Test for Rapid Diagnosis of Valley Fever
快速诊断谷热的即时测试
- 批准号:
10759985 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
Unlocking serology’s secrets: harnessing novel immune biomarkers to predict Lyme disease progression and recovery
揭开血清学的秘密:利用新型免疫生物标志物来预测莱姆病的进展和恢复
- 批准号:
10737313 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别:
The role of iron in retinal degeneration during bacterial infection
铁在细菌感染期间视网膜变性中的作用
- 批准号:
10676039 - 财政年份:2023
- 资助金额:
$ 46.65万 - 项目类别: